Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

17.07.2018

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang noch wenig beachtet ist dabei die Arbeit mit dem Werkstoff Diamant, der für die Fusionstechnologie unverzichtbar ist.


Polykristalline CVD-Diamantscheiben für Fensteranlagen in Fusionsreaktoren und Gyrotrons

Foto: Tanja Meißner, KIT


Professor Theo Scherer (l.) und Dr. Dirk Strauss (r.) vom Institut für Angewandte Materialien (IAM) des KIT mit den Diamantscheiben

Foto: Tanja Meißner, KIT

Forscherinnen und Forscher des Karlsruher Instituts für Technologie (KIT) entwickeln Scheiben aus Diamant für Fensteranlagen, durch die das Plasma in Fusionsreaktoren erhitzt wird. Gemeinsam mit dem Unternehmen Diamond Materials haben sie nun eine Diamantscheibe mit einem Durchmesser von 180 Millimetern gefertigt.

Die Sonne macht es vor: In ihrem Feuer verschmelzen Wasserstoffatome zu Helium und bei dieser Kernfusion werden riesige Mengen Energie freigesetzt. In Fusionskraftwerken auf der Erde könnte dieses „Sternenfeuer“ zu einer nachhaltigen und sicheren Energieversorgung beitragen.

Weltweit arbeiten heute Fusionsforscherinnen und -forscher gemeinsam daran, die ersten Reaktoren ans Netz zu bringen. Am KIT werden beispielsweise für den internationalen Forschungsreaktor ITER und auch für kleinere Reaktoren, wie Wendelstein 7X und ASDEX Upgrade so genannte Gyrotrons entwickelt.

Das sind Mikrowellenoszillatoren, mit denen im Reaktor – wie in einem sehr großen Mikrowellenofen – eine Temperatur von bis zu 150 Millionen Grad Celsius erzeugt wird. Dadurch erreicht der Brennstoff Tritium den für die Fusion notwendigen Plasmazustand.

Um die Mikrowellenstrahlung aus den Gyrotrons in das Plasma zu führen und gleichzeitig ein Vakuum sowie das radioaktive Tritium im Inneren des Reaktors zu halten, konstruiert ein Team um Dr. Dirk Strauss und Professor Theo Scherer vom Institut für Angewandte Materialien (IAM) des KIT außerdem die passenden Reaktor-Fensteranlagen.

Als Material für die Scheiben kommt dabei nur ein Werkstoff in Frage: „Diamant ist hier unverzichtbar“, sagt Dirk Strauss. „Kein anderes bekanntes Material kann der extremen Mikrowellenstrahlung standhalten und besitzt gleichzeitig die notwendige Durchlässigkeit mit geringen Verlusten.“

Um Strahlung mit einer Leistung von über einem Megawatt in den Forschungsreaktor ITER zu leiten, wurden am IAM bereits eine Vielzahl Diamantfenster konzipiert und in Kooperation mit Industriepartnern hergestellt. Inzwischen arbeiten sie auch an den Fensteranlagen für den ITER-Nachfolgereaktor DEMO, mit dem ab etwa 2050 tatsächlich Strom produziert werden kann.

Bei dieser Anlage werden durch einen geplanten Mehrfrequenzbetrieb der Mikrowellenheizung neuartige Gyrotrons notwendig, die zurzeit von der Forschungsgruppe um Professor John Jelonnek am Institut für Hochleistungsimpuls- und Mikrowellentechnik des KIT entwickelt werden. Diese neuen Gyrotrons erfordern wiederum neue Fensteranlagen mit größeren Diamantscheiben.

Ein entsprechender Prototyp liegt nun vor: „Unsere Scheibe hat einen Durchmesser von 180 Millimetern und ist bis zu zwei Millimeter dick“, sagt Theo Scherer. „Damit ist sie die größte synthetische Diamantstruktur, die bisher einsetzbar gefertigt wurde.“ Nun werden am IAM die Oberflächenstruktur sowie die Hochfrequenzcharakteristik in Bezug auf Mikrowellenverluste des Fensters geprüft.

Das Herstellen der Scheiben aus synthetischem Diamant erfolgt durch chemische Gasphasenabscheidung (chemical vapor deposition, CVD), einem speziellen Beschichtungsverfahren. Die CVD-Diamanten wachsen dabei auf einer Siliziumoberfläche in einem kleinen Vakuumreaktor, der mit einem Gasgemisch befüllt ist.

Aus diesem wird – ähnlich wie im Fusionsreaktor, allerding unter viel geringerem Energieeinsatz – mittels Mikrowellenbestrahlung ein Plasma erzeugt. Dieses besteht aus atomarem Wasserstoff, der eine unerwünschte Graphitbildung verhindert sowie einer geringen Menge Methan, das den Kohlenstoff für den Diamanten liefert. „Es ist ein langwieriger und komplexer Prozess“, sagt Dirk Strauss.

„Das Diamantfenster wächst dabei nur wenige Mikrometer in einer Stunde.“ Entsprechend teuer sei auch das Endprodukt. Die Herstellung jeder Diamantscheibe für den DEMO-Reaktor erfordere einen sechsstelligen Eurobetrag, berichtet Strauss.

Mit der neuen Diamantscheibe seien die Möglichkeiten des Werkstoffs Diamant für die Fusionstechnologie noch nicht ausgeschöpft. Bislang wurden die Diamantscheiben am IAM mit einer polykristallinen Struktur konzipiert, sie bestehen also aus einer Vielzahl winziger Diamanten. „Zurzeit arbeiten wir an der Entwicklung von einkristallinen Diamantscheiben“, sagt Theo Scherer. „Das könnte zu einer weiteren Verringerung der Mikrowellenverluste während der Transmission beitragen.“

Bildunterschrift 1:Polykristalline CVD-Diamantscheiben für Fensteranlagen in Fusionsreaktoren und Gyrotrons (Foto: Tanja Meißner, KIT)

Bildunterschrift 2: Professor Theo Scherer (l.) und Dr. Dirk Strauss (r.) vom Institut für Angewandte Mate-rialien (IAM) des KIT mit den Diamantscheiben (Foto: Tanja Meißner, KIT)

Weiterer Kontakt:

Dr. Martin Heidelberger, Redakteur/Pressereferent, Tel.: +49 721 608-21169, E-Mail: martin.heidelberger@kit.edu

 

Als „Die Forschungsuniversität in der Helmholtz-Gemeinschaft“ schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9 300 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 25 500 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen.

 

Diese Presseinformation ist im Internet abrufbar unter: http://www.sek.kit.edu/presse.php

Die Fotos stehen in der höchsten uns vorliegenden Qualität zum Download bereit unter http://www.kit.edu/downloads/pi_bilder/2018_084_Diamant ein unverzichtbarer Werkstoff der Fusionstechnologie.jpg und http://www.kit.edu/downloads/pi_bilder/2018_084_Diamant ein unverzichtbarer Werkstoff der Fusionstechnologie_1.jpg und können angefordert werden unter: presse@kit.edu oder +49 721 608-21105.

Die Verwendung der Bilder ist ausschließlich in dem oben genannten Zusammenhang gestattet.

Karlsruher Institut für Technologie (KIT)
Strategische Entwicklung und Kommunikation (SEK)
Monika Landgraf
Leiterin Gesamtkommunikation
Pressesprecherin
Kaiserstraße 12
76131 Karlsruhe
Telefon: +49 721 608-21105
Fax: +49 721 608-43658
E-Mail: presse@kit.edu

www.kit.edu

KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft

Das KIT ist seit 2010 als familiengerechte Hochschule zertifiziert.

Monika Landgraf | Karlsruher Institut für Technologie (KIT)

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Chillventa 2018: Fraunhofer ISE rückt Wärmepumpen in den Fokus
12.10.2018 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Mikro-Energiesammler für das Internet der Dinge
11.10.2018 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Entzündungsprozesse beeinträchtigen Nervenregeneration im Alter

19.10.2018 | Biowissenschaften Chemie

Auf dem Weg zu maßgeschneiderten Naturstoffen

19.10.2018 | Biowissenschaften Chemie

Magnetische Sensoren ermöglichen richtungsabhängige Temperaturmessung

19.10.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics