Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Damit Bildschirme kräftiger leuchten: Bayreuther Forscher entdecken Weg zur Farbsteuerung von OLEDs

23.03.2018

Organische Leuchtdioden (OLEDs) werden in Smartphones und TV-Geräten eingesetzt und unterstützen eine kontrastreiche Darstellung von Farben. In diesen Dioden werden als organische Halbleiter oft konjugierte Polymere eingesetzt. Forscher der Universität Bayreuth haben jetzt herausgefunden, wie die räumliche Struktur dieser Polymere genutzt werden kann, um die Farben der OLEDs zu steuern und Bildschirme noch besser zum Leuchten zu bringen. Im Wissenschaftsmagazin PNAS stellen sie diesen bisher unbekannten Mechanismus vor.

Polymere mit Rückgrat: Räumliche Strukturen bestimmen die Farben des Lichts


Links ein Polymer mit gestrecktem Rückgrat (rot-gelb). Die Seitenarme (grau) der molekularen Bausteine bilden ein Gerüst, das die Streckung stabilisiert. Rechts ein Polymer mit gekrümmtem Rückgrat.

Grafik: Dominic Raithel


Dominic Raithel M.Sc. bei der Vorbereitung eines Experiments in einem Laserlabor der Universität Bayreuth.

Foto: Christian Wißler

Im Mittelpunkt der neuen Forschungsergebnisse stehen Polymere, die sich für den Einsatz in organischen Leuchtdioden eignen. Aufgrund der aneinander geketteten molekularen Bausteine besitzen sie ein Rückgrat. Werden die Polymere nun einem Laserstrahl ausgesetzt, absorbieren sie das Licht und speichern es als Anregungsenergie. Diese Energie breitet sich an ihrem Rückgrat entlang aus. Kurz darauf wird sie durch Abstrahlung von Licht freigesetzt.

Bisher ist man davon ausgegangen, dass die Farbe des abgestrahlten Lichts davon abhängig sei, wie weit sich die Anregungsenergie in den Polymeren ausbreitet: Der Bereich, in dem sich die Energie ausdehnt, sei umso kleiner, je stärker die Polymere gekrümmt sind, hieß es. Doch die Bayreuther Wissenschaftler haben diese Annahmen jetzt widerlegt.

Die von ihnen untersuchten Polymere haben ein chemisch identisches Rückgrat und sind unterschiedlich gekrümmt, aber die Anregungsenergie dehnt sich über gleich große Bereiche aus. Gekrümmte Polymere senden grünes oder blaues Licht aus, gestreckte Polymere strahlen gelb oder rötlich.

„Wenn diese Polymere in organischen Leuchtdioden zum Einsatz kommen, können ihre unterschiedlichen räumlichen Strukturen genutzt werden, um die Farben des von den OLEDs abgestrahlten Lichts präzise zu steuern“, erklärt der Physiker Dominic Raithel M.Sc., Erstautor der jetzt in PNAS veröffentlichten Studie.

Wie die Bayreuther Forscher ebenfalls herausgefunden haben, besitzen gestreckte Polymere ein von ihren Seitenarmen gebildetes Gerüst, das die Streckung stabilisiert. „Daraus ergibt sich für Leuchtdioden ein besonderer Vorteil: Wenn gestreckte Polymere übereinander geschichtet werden, sorgen die Gerüste für Stabilität. Die Lichtemission wird dadurch nicht geschwächt“, sagt Raithel.

Vor kurzem hat er seine Dissertation im DFG-Graduiertenkolleg „Photophysics of Synthetic and Biological Multichromophoric Systems“ der Universität Bayreuth abgeschlossen. Hier werden natürliche und künstliche organische Materialien in enger interdisziplinärer Zusammenarbeit erforscht. So waren an der neuen Studie sowohl die Experimentalphysiker Prof. Dr. Anna Köhler und Prof. Dr. Jürgen Köhler als auch Prof. Dr. Mukundan Thelakkat als Experte für Funktionspolymere beteiligt.

Transatlantisches Zusammenspiel von Theorie und Experiment

Bei den vergleichenden experimentellen Untersuchungen der Polymere kamen verschiedene Spektroskopieverfahren zum Einsatz. „Entscheidend war dabei die Einzelmolekülspektroskopie bei sehr tiefen Temperaturen, für die uns hier in Bayreuth eine hochleistungsfähige Infrastruktur zur Verfügung steht. Mit dieser Methode konnten wir die Farben des emittierten Lichts und schließlich auch die Ausdehnung der Anregungsenergie über die kettenförmig aufgebauten Polymere bestimmen“, erklärt Dr. Richard Hildner, der die Forschungsarbeiten an der Universität Bayreuth koordiniert hat.

Die Bayreuther Wissenschaftler haben eng mit einer Arbeitsgruppe an der Rice University in Houston/Texas zusammengearbeitet. Hier wurden von Dr. Lena Simine und Prof. Dr. Peter J. Rossky umfangreiche Berechnungen zum Einfluss der Polymerstrukturen auf die Farbe des emittierten Lichts angestellt. Die Verbindung von experimentellen mit theoretischen Methoden führte schließlich zu Einblicken in die räumliche Struktur einzelner Polymerketten, die mit herkömmlichen bildgebenden Verfahren nicht möglich sind.

Veröffentlichung:

Dominic Raithel, Lena Simine, Sebastian Pickel, Konstantin Schötz, Fabian Panzer, Sebastian Baderschneider, Daniel Schiefer, Ruth Lohwasser, Jürgen Köhler, Mukundan Thelakkat, Michael Sommer, Anna Köhler, Peter J. Rossky and Richard Hildner: Direct observation of backbone planarization via side-chain alignment in single bulky-substituted polythiophenes, Proceedings of the National Academy of Sciences of the United States of America – PNAS 2018, vol. 115, no. 11, 2699-2704.
DOI 10.1073/pnas.1719303115

Forschungsförderung:

Die Forschungsarbeiten wurden gefördert von der Deutschen Forschungsgemeinschaft (DFG), vom Bayerischen Wissenschaftsministerium im Rahmen des Netwerks „Solar Technologies Go Hybrid“, vom Elitenetzwerk Bayern (ENB) sowie von der National Science Foundation (NSF) der USA. Prof. Dr. Michael Sommer (Universität Freiburg/TU Chemnitz) synthetisierte einige der untersuchten Polymere, Prof. Dr. Marin van Heel (Universität Leiden) entwickelte Algorithmen für die Datenanalyse.

Kontakt:

Dr. Richard Hildner
Experimentalphysik IV
Universität Bayreuth
Telefon: +49 (0) 921 55 4040
E-Mail: richard.hildner@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de/

Weitere Berichte zu: Anregungsenergie DFG Leuchtdioden Licht OLEDs PNAS Polymere Polymerketten Rückgrat

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Ein magnetisches Gedächtnis für den Computer
12.11.2018 | Technische Universität Wien

nachricht Neue Rekorde bei Perowskit-Silizium-Tandemsolarzellen durch verbesserten Lichteinfang
12.11.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Graphen auf dem Weg zur Supraleitung

Doppelschichten aus Graphen haben eine Eigenschaft, die ihnen erlauben könnte, Strom völlig widerstandslos zu leiten. Dies zeigt nun eine Arbeit an BESSY II. Ein Team hat dafür die Bandstruktur dieser Proben mit extrem hoher Präzision ausgemessen und an einer überraschenden Stelle einen flachen Bereich entdeckt. Möglich wurde dies durch die extrem hohe Auflösung des ARPES-Instruments an BESSY II.

Aus reinem Kohlenstoff bestehen so unterschiedliche Materialien wie Diamant, Graphit oder Graphen. In Graphen bilden die Kohlenstoffatome ein zweidimensionales...

Im Focus: Datensicherheit: Aufbruch in die Quantentechnologie

Den Datenverkehr noch schneller und abhörsicher machen: Darauf zielt ein neues Verbundprojekt ab, an dem Physiker der Uni Würzburg beteiligt sind. Das Bundesforschungsministerium fördert das Projekt mit 14,8 Millionen Euro.

Je stärker die Digitalisierung voranschreitet, umso mehr gewinnen Datensicherheit und sichere Kommunikation an Bedeutung. Für diese Ziele ist die...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Forschungsschiff Polarstern startet Antarktissaison

Wie sieht es unter dem Schelfeis des abgebrochenen Riesen-Eisbergs A68 aus?

Am Samstag, den 10. November 2018 verlässt das Forschungsschiff Polarstern seinen Heimathafen Bremerhaven Richtung Kapstadt, Südafrika.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wer rechnet schneller? Algorithmen und ihre gesellschaftliche Überwachung

12.11.2018 | Veranstaltungen

Profilierte Ausblicke auf die Mobilität von morgen

12.11.2018 | Veranstaltungen

Mehrwegbecher-System für Darmstadt: Prototyp-Präsentation am Freitag, 16. November, 11 Uhr

09.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ein magnetisches Gedächtnis für den Computer

12.11.2018 | Energie und Elektrotechnik

Autonomes Parken wird erprobt

12.11.2018 | Informationstechnologie

Multicopter und Satelliten für den Rettungseinsatz

12.11.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics