Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher machen Brennstoffzellen billiger

16.05.2006


Neues Stack-Design aus Keramikplatten sorgt für langes Leben



Wissenschaftler des Fraunhofer-Instituts für Keramische Technologien und Systeme IKTS in Dresden haben neue Brennstoffzellen entwickelt, die den extremen thermischen, mechanischen und chemischen Belastungen standhalten. Mit Partner aus der Industrie ist es den Wissenschaftlern gelungen, eine Technik zu entwickeln, die Brennstoffzellen preisgünstig und langlebiger macht. Das Herzstück der neuen Hochtemperaturbrennstoffzellen, die sowohl Diesel, Erdgas oder Benzin, Biogas oder Wasserstoff in Wärme und Strom verwandeln, besteht aus Keramik.



"Keramische Hochtemperaturbrennstoffzellen werden schon bald ein Massenmarkt sein", so Alexander Michaelis, Leiter des IKTS. "Sie eignen sich als mobile Stromgeneratoren für Campingfahrzeuge, Boote, LKWs oder PKWs, aber auch für stationäre Anwendungen zur Strom- Wärme- und Kältegewinnung oder zur Verstromung von Biogas in der Landwirtschaft." Mit der Entwicklung kostengünstiger und langlebiger Stacks, dem Herzstück der Hochtemperaturbrennstoffzellen, haben Forscher vom IKTS jetzt die Voraussetzung für eine kommerzielle Nutzung geschaffen.

Stacks sind Stapel aus dünnen keramischen Platten, an deren Oberfläche die Brennstoffe durch einen elektrochemischen Prozess direkt in elektrische Leistung umgewandelt werden. Verglichen mit Polymeren, die in Niedertemperaturbrennstoffzellen eingesetzt werden, haben diese keramischen Zellen den großen Vorteil, dass sie nicht nur reinen Wasserstoff, sondern auch Methan, Benzin, Diesel, Erd- oder Biogas verstromen können. Dieser Prozess ist technisch relativ einfach und daher kostengünstig. In Kombination mit Strom, Wärme- beziehungsweise Kältekopplung lassen sich Wirkungsgrade von mehr als 90 Prozent erreichen - mehr als mit jeder anderen Technologie.

Vor große Probleme stellte die Forscher allerdings das, was die Stacks im Inneren der Brennstoffzelle aushalten mussten: Die Betriebstemperatur kann bis zu tausend Grad betragen. Auf der Brenngasseite der keramischen Zellen herrschen extrem reduzierende und auf der Luftseite extrem oxidierende Bedingungen. Die Forscher am IKTS haben gemeinsam mit einigen Industriepartnern Verbundstoffe aus Metall, Keramik und Glas konzipiert, die sich für den Bau solcher kostengünstiger und robuster Stacks hervorragend eignen. In ersten Versuchen konnte eine Lebensdauer von mehr als 5.000 Stunden erreicht werden. Schon bald sollen diese neuen Brennstoffzellen in Serie hergestellt werden.

Wolfgang Weitlaner | pressetext.deutschland
Weitere Informationen:
http://www.fraunhofer.de
http://www.ikts.fraunhofer.de

Weitere Berichte zu: Biogas Brennstoffzelle Diesel Hochtemperaturbrennstoffzelle

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Optimierungspotenziale bei Kaminöfen
21.09.2018 | Technologie- und Förderzentrum im Kompetenzzentrum für Nachwachsende Rohstoffe (TFZ)

nachricht Using hydrogen, methane and methanol to reduce CO2 emissions
19.09.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics