Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

EU-Projekt zur Optimierung der Lebensdauer von Brennstoffzellen

05.06.2008
"Mein Motor braucht nur Luft und Wasserstoff." Mit dieser Aufschrift könnten sich bald viele Fahrzeuge schmücken, aus deren Auspuff weder schädliche Gase noch Rußpartikel kommen, denn Energie aus wasserstoffgespeisten Brennstoffzellen zu gewinnen, ist keine weltfremde Träumerei.

Mehrere solcher neuartigen Automotoren stehen kurz vor der Marktreife. Sorge bereitet den Entwicklern derzeit vor allem das "Abfallprodukt" Wasser. Mittels Experimenten und Computersimulationen wird in einem europaweiten Projekt untersucht, wie verhindert werden kann, dass flüssiges Wasser dünne Materialschichten in Brennstoffzellen beschädigt und so ihre Lebensdauer verkürzt. An der Universität Erlangen-Nürnberg beteiligen sich zwei Lehrstühle und das Regionale Rechenzentrum Erlangen (RRZE) an den Forschungen, für die ein Budget von insgesamt 5,6 Millionen Euro bereitgestellt ist.

Mit einer Fördersumme von 3,7 Millionen unterstützt die Europäische Union das Großprojekt mit der Abkürzung DECODE. Für die Erlanger Projekte sind 560.000 Euro vorgesehen, von denen die EU drei Viertel trägt. Der Lehrstuhl für Informatik 10 von Prof. Dr. Ulrich Rüde, der Lehrstuhl für Theoretische Physik I von Prof. Dr. Klaus Mecke und das RRZE kooperieren in diesem Projekt mit der Chalmers University in Göteborg, dem Deutschen Zentrum für Luft- und Raumfahrt e. V. sowie drei weiteren Forschungsinstituten und fünf Industriepartnern aus Deutschland, Schweden, Frankreich, Italien und den Niederlanden. Im Frühjahr 2011 sollen die Forschungen abgeschlossen sein.

Umleitung für Elektronen
Brennstoffzellen, die ursprünglich in den Apollo- und Space-Shuttle-Programmen für die Raumfahrt entwickelt wurden, wandeln mit einem hohen Wirkungsgrad chemische in elektrische Energie um. Inzwischen existieren unterschiedliche Arten, die auf verschiedenen Reaktionen basieren. Die bekannteste ist die Proton-Exchange-Membrane(PEM)-Brennstoffzelle, die mit Wasserstoff und Sauerstoff arbeitet.
... mehr zu:
»Brennstoffzelle »DECODE

Eine PEM-Brennstoffzelle besteht aus mehreren Schichten. An zentrale Stelle steht eine Membran, die lediglich für Protonen und ihre positive Ladung "durchlässig" ist, jedoch nicht für Elektronen. Auf jeder Seite der Membran liegt eine Elektrode. Eine Metallplatte mit eingearbeiteten Kanälen leitet das Gas dorthin. Wenn nun Wasserstoff auf der Anoden-Seite einströmt, können nur die Protonen des Gases die Membran passieren, die Elektronen jedoch werden aufgehalten. Sie müssen den Umweg über die Elektroden nehmen, passieren eine zwischengeschaltete Verbrauchsstation - beispielsweise einen Elektromotor -und geben dabei Energie ab. Auf der anderen Seite, der Kathode, kombinieren sie mit dem Sauerstoff der einströmenden Luft und den diffundierten Protonen zu Wasser. Da Wasserstoff leicht zu gewinnen ist und Wasser als einziges Endprodukt entsteht, sind Brennstoffzellen umweltfreundliche Energieerzeuger.

Notwendige Feuchtigkeit und überflüssiges Wasser
Das Projekt DECODE (engl. Akronym für "Untersuchung von Degenerationsmechanismen zur Verbesserung von Komponenten und Design von PE-Brennstoffzellen") befasst sich mit Polymer-Elektrolyt(PE)-Brennstoffzellen. Deren Betriebs­temperatur liegt im Bereich um die 60-80°C, womit sie in die Kategorie der Niedrigtemperaturbrennstoffzellen fallen. Außer in vielerlei anderen Einsatzgebieten sind sie deshalb auch für die Automobilindustrie interessant. Viele der wichtigsten Hindernisse wurden mittlerweile von Automobil-Firmen wie Opel, Volvo und Mercedes überwunden: der Kaltstart zu Beginn der Fahrt, wenn die Brennstoffzelle noch nicht auf Arbeits­temperatur ist; eine höhere Leistung durch Aneinanderreihen mehrerer Zellen und die Wasserstoffaufbewahrung in speziellen Hochdrucktanks. Die Lebensdauer bleibt aber bisher ein Problembereich.

Die Effizienz und elektrische Leistung der Brennstoffzelle hängt stark davon ab, ob die chemischen Reaktionen ungehindert und optimal ablaufen können. Dafür sorgen Katalysatorschichten und Beschichtungen des porösen Materials der Elektrode. Eine gewisse Feuchtigkeit muss zwar in der Kathode vorherrschen, doch flüssiges Wasser kann die Beschichtungen über eine Vielzahl von mechanischen und chemischen Prozessen abtragen und zerstören. Auf lange Frist beeinträchtigt das die Leistungsfähigkeit der Brennstoffzelle. Im Projekt DECODE soll das Verhalten des Wassers und seine Auswirkung auf die Lebensdauer der Materialien bestimmt werden.

Aufgabe der beiden Lehrstühle der Universität Erlangen-Nürnberg im Projekt ist es, das Verhalten des Wassers in der porösen Gasdiffusionsschicht der Elektrode auf dem Computer zu simulieren und die Reaktion auf gealterte Materialien zu untersuchen. Dabei werden zwei verschiedene Verfahren angewandt: Die Informatik simuliert mittels der Lattice-Boltzmann-Methode die grobporigere Schicht mit Poren im Mikrometerbereich (ein millionstel Meter); die Theoretische Physik wendet Methoden der Molekulardynamik in der feinporigeren Schicht an, deren Poren im 100-Nanometer-Bereich (100 milliardstel Meter) liegen.

Supercomputer bis zur Grenze gefordert
Für diese Simulationen fallen riesige Datenmengen im 10-Terabyte-Bereich an (ein Terabyte sind ca 1.000 Gigabyte), die gleichzeitig im Speicher des Computers gehalten werden müssen. Solch immens große Simulationen sind nur mit modernsten Supercomputern möglich, wie etwa dem leistungsfähigsten deutschen Rechner HLRB2 am Leibniz-Rechenzentrum in Garching. Er kann 62 Billionen Rechenoperationen pro Sekunde ausführen und hat 39 Terabyte Hauptspeicher, das ist ungefähr 20.000 Mal so viel wie ein handelsüblicher PC. Der Rechner, der mit diesen Leistungen auf Platz 15 der 500 schnellsten Computer weltweit liegt, ist gerade ausreichend für diese Simulationen.

Mit den Ergebnissen der Simulationen sollen die Industriepartner Methoden entwickeln kön-nen, die Eigenschaften und damit die Lebensdauer der Materialien zu verbessern. Die EU fördert DECODE innerhalb des Sektors "Energie" im Rahmen-Förderungsprogramm FP7. Diesem Sektor wurde ein Gesamt-Budget von 2,3 Milliarden Euro zur Verfügung gestellt. Damit sollen wissenschaftliche Grundlagen dafür geschaffen werden, Energiekosten einzusparen und den Klimawandel abzuschwächen.

Die Universität Erlangen-Nürnberg, gegründet 1743, ist mit 26.000 Studierenden, 550 Professorinnen und Professoren sowie 2000 wissenschaftlichen Mitarbeiterinnen und Mitarbeitern die größte Universität in Nordbayern. Schwerpunkte in Forschung und Lehre liegen an den Schnittstellen von Naturwissenschaften, Technik und Medizin in engem Dialog mit Jura und Theologie sowie den Geistes-, Sozial- und Wirtschaftswissenschaften. Seit Mai 2008 trägt die Universität das Siegel "familiengerechte Hochschule".

Ute Missel | idw
Weitere Informationen:
http://www.uni-erlangen.de/

Weitere Berichte zu: Brennstoffzelle DECODE

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Strom aus Meereswellen – Prototyp läuft in Nordsee
21.10.2019 | Universität Duisburg-Essen

nachricht Neue Impulse für die Energiewende – Power2X startet in die zweite Projektphase
21.10.2019 | DECHEMA Gesellschaft für Chemische Technik und Biotechnologie e.V.

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburger Forschenden gelingt die erste Synthese eines kationischen Tetraederclusters in Lösung

Hauptgruppenatome kommen oft in kleinen Clustern vor, die neutral, negativ oder positiv geladen sein können. Das bekannteste neutrale sogenannte Tetraedercluster ist der weiße Phosphor (P4), aber darüber hinaus sind weitere Tetraeder als Substanz isolierbar. Es handelt sich um Moleküle aus vier Atomen, deren räumliche Anordnung einem Tetraeder aus gleichseitigen Dreiecken entspricht. Bisher waren neben mindestens sechs neutralen Versionen wie As4 oder AsP3 eine Vielzahl von negativ geladenen Tetraedern wie In2Sb22– bekannt, jedoch keine kationischen, also positiv geladenen Varianten.

Ein Team um Prof. Dr. Ingo Krossing vom Institut für Anorganische und Analytische Chemie der Universität Freiburg ist es gelungen, diese positiv geladenen...

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Atombilder zeigen ungewöhnlich viele Nachbarn für einige Sauerstoffatome

21.10.2019 | Physik Astronomie

Bioprinting: Lebende Zellen im 3D-Drucker

21.10.2019 | Biowissenschaften Chemie

Freiburger Forschenden gelingt die erste Synthese eines kationischen Tetraederclusters in Lösung

21.10.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics