Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

EU-Projekt zur Optimierung der Lebensdauer von Brennstoffzellen

05.06.2008
"Mein Motor braucht nur Luft und Wasserstoff." Mit dieser Aufschrift könnten sich bald viele Fahrzeuge schmücken, aus deren Auspuff weder schädliche Gase noch Rußpartikel kommen, denn Energie aus wasserstoffgespeisten Brennstoffzellen zu gewinnen, ist keine weltfremde Träumerei.

Mehrere solcher neuartigen Automotoren stehen kurz vor der Marktreife. Sorge bereitet den Entwicklern derzeit vor allem das "Abfallprodukt" Wasser. Mittels Experimenten und Computersimulationen wird in einem europaweiten Projekt untersucht, wie verhindert werden kann, dass flüssiges Wasser dünne Materialschichten in Brennstoffzellen beschädigt und so ihre Lebensdauer verkürzt. An der Universität Erlangen-Nürnberg beteiligen sich zwei Lehrstühle und das Regionale Rechenzentrum Erlangen (RRZE) an den Forschungen, für die ein Budget von insgesamt 5,6 Millionen Euro bereitgestellt ist.

Mit einer Fördersumme von 3,7 Millionen unterstützt die Europäische Union das Großprojekt mit der Abkürzung DECODE. Für die Erlanger Projekte sind 560.000 Euro vorgesehen, von denen die EU drei Viertel trägt. Der Lehrstuhl für Informatik 10 von Prof. Dr. Ulrich Rüde, der Lehrstuhl für Theoretische Physik I von Prof. Dr. Klaus Mecke und das RRZE kooperieren in diesem Projekt mit der Chalmers University in Göteborg, dem Deutschen Zentrum für Luft- und Raumfahrt e. V. sowie drei weiteren Forschungsinstituten und fünf Industriepartnern aus Deutschland, Schweden, Frankreich, Italien und den Niederlanden. Im Frühjahr 2011 sollen die Forschungen abgeschlossen sein.

Umleitung für Elektronen
Brennstoffzellen, die ursprünglich in den Apollo- und Space-Shuttle-Programmen für die Raumfahrt entwickelt wurden, wandeln mit einem hohen Wirkungsgrad chemische in elektrische Energie um. Inzwischen existieren unterschiedliche Arten, die auf verschiedenen Reaktionen basieren. Die bekannteste ist die Proton-Exchange-Membrane(PEM)-Brennstoffzelle, die mit Wasserstoff und Sauerstoff arbeitet.
... mehr zu:
»Brennstoffzelle »DECODE

Eine PEM-Brennstoffzelle besteht aus mehreren Schichten. An zentrale Stelle steht eine Membran, die lediglich für Protonen und ihre positive Ladung "durchlässig" ist, jedoch nicht für Elektronen. Auf jeder Seite der Membran liegt eine Elektrode. Eine Metallplatte mit eingearbeiteten Kanälen leitet das Gas dorthin. Wenn nun Wasserstoff auf der Anoden-Seite einströmt, können nur die Protonen des Gases die Membran passieren, die Elektronen jedoch werden aufgehalten. Sie müssen den Umweg über die Elektroden nehmen, passieren eine zwischengeschaltete Verbrauchsstation - beispielsweise einen Elektromotor -und geben dabei Energie ab. Auf der anderen Seite, der Kathode, kombinieren sie mit dem Sauerstoff der einströmenden Luft und den diffundierten Protonen zu Wasser. Da Wasserstoff leicht zu gewinnen ist und Wasser als einziges Endprodukt entsteht, sind Brennstoffzellen umweltfreundliche Energieerzeuger.

Notwendige Feuchtigkeit und überflüssiges Wasser
Das Projekt DECODE (engl. Akronym für "Untersuchung von Degenerationsmechanismen zur Verbesserung von Komponenten und Design von PE-Brennstoffzellen") befasst sich mit Polymer-Elektrolyt(PE)-Brennstoffzellen. Deren Betriebs­temperatur liegt im Bereich um die 60-80°C, womit sie in die Kategorie der Niedrigtemperaturbrennstoffzellen fallen. Außer in vielerlei anderen Einsatzgebieten sind sie deshalb auch für die Automobilindustrie interessant. Viele der wichtigsten Hindernisse wurden mittlerweile von Automobil-Firmen wie Opel, Volvo und Mercedes überwunden: der Kaltstart zu Beginn der Fahrt, wenn die Brennstoffzelle noch nicht auf Arbeits­temperatur ist; eine höhere Leistung durch Aneinanderreihen mehrerer Zellen und die Wasserstoffaufbewahrung in speziellen Hochdrucktanks. Die Lebensdauer bleibt aber bisher ein Problembereich.

Die Effizienz und elektrische Leistung der Brennstoffzelle hängt stark davon ab, ob die chemischen Reaktionen ungehindert und optimal ablaufen können. Dafür sorgen Katalysatorschichten und Beschichtungen des porösen Materials der Elektrode. Eine gewisse Feuchtigkeit muss zwar in der Kathode vorherrschen, doch flüssiges Wasser kann die Beschichtungen über eine Vielzahl von mechanischen und chemischen Prozessen abtragen und zerstören. Auf lange Frist beeinträchtigt das die Leistungsfähigkeit der Brennstoffzelle. Im Projekt DECODE soll das Verhalten des Wassers und seine Auswirkung auf die Lebensdauer der Materialien bestimmt werden.

Aufgabe der beiden Lehrstühle der Universität Erlangen-Nürnberg im Projekt ist es, das Verhalten des Wassers in der porösen Gasdiffusionsschicht der Elektrode auf dem Computer zu simulieren und die Reaktion auf gealterte Materialien zu untersuchen. Dabei werden zwei verschiedene Verfahren angewandt: Die Informatik simuliert mittels der Lattice-Boltzmann-Methode die grobporigere Schicht mit Poren im Mikrometerbereich (ein millionstel Meter); die Theoretische Physik wendet Methoden der Molekulardynamik in der feinporigeren Schicht an, deren Poren im 100-Nanometer-Bereich (100 milliardstel Meter) liegen.

Supercomputer bis zur Grenze gefordert
Für diese Simulationen fallen riesige Datenmengen im 10-Terabyte-Bereich an (ein Terabyte sind ca 1.000 Gigabyte), die gleichzeitig im Speicher des Computers gehalten werden müssen. Solch immens große Simulationen sind nur mit modernsten Supercomputern möglich, wie etwa dem leistungsfähigsten deutschen Rechner HLRB2 am Leibniz-Rechenzentrum in Garching. Er kann 62 Billionen Rechenoperationen pro Sekunde ausführen und hat 39 Terabyte Hauptspeicher, das ist ungefähr 20.000 Mal so viel wie ein handelsüblicher PC. Der Rechner, der mit diesen Leistungen auf Platz 15 der 500 schnellsten Computer weltweit liegt, ist gerade ausreichend für diese Simulationen.

Mit den Ergebnissen der Simulationen sollen die Industriepartner Methoden entwickeln kön-nen, die Eigenschaften und damit die Lebensdauer der Materialien zu verbessern. Die EU fördert DECODE innerhalb des Sektors "Energie" im Rahmen-Förderungsprogramm FP7. Diesem Sektor wurde ein Gesamt-Budget von 2,3 Milliarden Euro zur Verfügung gestellt. Damit sollen wissenschaftliche Grundlagen dafür geschaffen werden, Energiekosten einzusparen und den Klimawandel abzuschwächen.

Die Universität Erlangen-Nürnberg, gegründet 1743, ist mit 26.000 Studierenden, 550 Professorinnen und Professoren sowie 2000 wissenschaftlichen Mitarbeiterinnen und Mitarbeitern die größte Universität in Nordbayern. Schwerpunkte in Forschung und Lehre liegen an den Schnittstellen von Naturwissenschaften, Technik und Medizin in engem Dialog mit Jura und Theologie sowie den Geistes-, Sozial- und Wirtschaftswissenschaften. Seit Mai 2008 trägt die Universität das Siegel "familiengerechte Hochschule".

Ute Missel | idw
Weitere Informationen:
http://www.uni-erlangen.de/

Weitere Berichte zu: Brennstoffzelle DECODE

Weitere Nachrichten aus der Kategorie Energie und Elektrotechnik:

nachricht Innovative Power-to-Gas-Technologien für die Energiewende
11.02.2020 | Karlsruher Institut für Technologie

nachricht Strategien für eine erfolgreiche Sektorenkopplung
10.02.2020 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

Alle Nachrichten aus der Kategorie: Energie und Elektrotechnik >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: Nanopartikel können Zellen verändern

Nanopartikel dringen leicht in Zellen ein. Wie sie sich dort verteilen und was sie bewirken, zeigen nun erstmals hochaufgelöste 3D-Mikroskopie-Aufnahmen an BESSY II. So reichern sich bestimmte Nanopartikel bevorzugt in bestimmten Organellen der Zelle an. Dadurch kann der Energieumsatz in der Zelle steigen. „Die Zelle sieht aus wie nach einem Marathonlauf, offensichtlich kostet es Energie, solche Nanopartikel aufzunehmen“, sagt Hauptautor James McNally.

Nanopartikel sind heute nicht nur in Kosmetikprodukten, sondern überall, in der Luft, im Wasser, im Boden und in der Nahrung. Weil sie so winzig sind, dringen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

„Kiss and Run“ zur Abfallverwertung in der Zelle

14.02.2020 | Biowissenschaften Chemie

Kurze Impulse mit großer Wirkung

14.02.2020 | Biowissenschaften Chemie

ESO-Teleskop sieht die Oberfläche des schwächelnden Beteigeuze

14.02.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics