Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zelluläres Räderwerk hält Proteinproduktion in Gang

02.12.2010
Drehen, schütteln und beiseite rücken – eine ausgeklügelte Choreografie sorgt in lebenden Zellen dafür, dass Aminosäuren in der vorgesehenen Reihenfolge verknüpft werden, wenn Proteine synthetisiert werden.

Marburger Pharmazeuten um Prof. Dr. Roland Hartmann und ihre Kooperationspartner haben jetzt mit bisher ungekannter Genauigkeit nachgezeichnet, welch komplizierte Bewegungen dabei ablaufen.

Sie veröffentlichen ihre Erkenntnisse in der aktuellen Ausgabe der Wissenschaftszeitschrift "Nature", die heute (2. Dezember 2010) erscheint.

Die Biosynthese von Proteinen findet an großen Molekülkomplexen statt, den so genannten Ribosomen. Sie fungieren als Montageplattformen, an denen Ausgangsmaterialien und Werkzeuge zusammengeführt werden. Damit funktionsfähige Eiweißverbindungen entstehen, müssen die Aminosäuren genau so angeordnet werden, wie es genetisch vorgegeben ist.

Als Verbindungsstück zwischen der genetischen Vorlage und dem entsprechenden Protein kommt die so genannte tRNA zum Einsatz: Sie trägt jeweils eine bestimmte Aminosäure und verfügt zugleich über eine Bindungssequenz, die exakt zu definierten Stellen der Vorlage passt. Auf diese Weise gelangt jede Aminosäure automatisch an die für sie vorgesehene Position. Sobald ein tRNA-Molekül seine Aminosäure an die wachsende Kette eines Proteins abgegeben hat, wandert es entlang des Ribosoms weiter, um Platz für die nächste tRNA zu machen. Dabei bildet das Ribosom einen Komplex mit einem Enzym namens EF-G, das den Transportprozess erleichtert.

Die beteiligten Wissenschaftler sind nun der Frage nachgegangen, wie der Ortswechsel der tRNA-Moleküle im Detail vor sich geht – ein anspruchsvolles Unterfangen, weil die Bewegung sehr schnell vor sich geht, so dass sie nur schwer zu beobachten ist. Die internationale Arbeitsgruppe rekonstruierte die aufeinander folgenden Zustände des Ribosoms, indem ein Team um Professor Dr. Christian Spahn an der Charité in Berlin die Methode der dreidimensionalen Kryo-Elektronenmikroskopie nutzte. „Bei diesem Verfahren werden die Ribosomen in flüssigem Ethan bei – 192° Celsius schockgefroren und mehrere 100.000 zweidimensionale Einzelbilder in zwei dreidimensionale Rekonstruktionen zurückprojiziert“, erläutern die Wissenschaftler.

Für die tRNA lassen sich drei Positionen unterscheiden: An der ersten bindet die tRNA ans Ribosom, wobei sie eine Aminosäure trägt (A-Position); an der zweiten hat sie die Aminosäure abgegeben (P); und an der dritten verlässt die tRNA das Ribosom (E). Den Autoren ist es nun gelungen, einen neuartigen Übergangszustand zu identifizieren, bei dem sich die tRNA zwischen zwei dieser Positionen befindet.

Wie die Forscher darüber hinaus feststellten, geht dieser Transport mit festgelegten Bewegungen des Ribosoms einher: Dessen beide Untereinheiten vollführen gegenläufige Drehungen und schieben dadurch die tRNA von einer Position zur nächsten. Hierbei gewährleistet das EF-G-Enzym, dass die Bewegungsrichtung beibehalten wird – wie ein Türstopper, der das Zurückschwingen verhindert.

„Unsere Einblicke in die Struktur der tRNA-Zustände legen ein Modell nahe, bei dem der tRNA-Transport durch Drehung, Einrasten und Entsperren des Ribosoms erleichtert werden“, fassen die Forscher ihre Ergebnisse zusammen. „Diese Befunde erlauben unmittelbare strukturelle und mechanistische Einsicht in die Zwischenprodukte, die an der universell konservierten Translokation beteilgt sind.“

An der Publikation in „Nature“ sind neben Roland Hartmann und seinem Mitarbeiter Andreas Ratje weitere Wissenschaftler aus Berlin, München, Frankfurt und den USA beteiligt. Hartmanns Arbeitsgruppe am Institut für Pharmazeutische Chemie der Philipps-Universität beschäftigt sich vor allem mit der Struktur und Funktion katalytischer und regulatorischer RNA-Moleküle.

Originalpublikation: Andreas H. Ratje & al.: Head swivel on the ribosome facilitates translocation by means of intra-subunit tRNA hybrid sites, Nature, Volume 468 (2 Dezember 2010), 713–716, DOI: 10.1038/nature09547

Weitere Informationen:
Ansprechpartner: Professor Dr. Roland K. Hartmann,
Institut für Pharmazeutische Chemie
Tel.: 06421 28-25827 oder -25553
E-Mail: roland.hartmann@staff.uni-marburg.de

Johannes Scholten | idw
Weitere Informationen:
http://www.uni-marburg.de/fb16/ipc/ag_hartmann/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen
20.07.2018 | Universitätsklinikum Heidelberg

nachricht Erwiesen: Mücken können tropisches Chikungunya-Virus auch bei niedrigen Temperaturen verbreiten
20.07.2018 | Bernhard-Nocht-Institut für Tropenmedizin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics