Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zelluläre Stressbewältigung bei Mensch und Pflanze

26.10.2015

Heidelberger Biowissenschaftler haben maßgebliche Funktion eines biologischen Mechanismus entdeckt

Bei Forschungen zur Modellpflanze Ackerschmalwand (Arabidopsis thaliana) haben Wissenschaftler vom Centre for Organismal Studies der Universität Heidelberg die maßgebliche Funktion eines zellulären Mechanismus zur Stressbewältigung entdeckt. Sie beobachteten dabei, dass sich Pflanze und Mensch in dieser Hinsicht biochemisch und zellbiologisch sehr ähnlich sind. Die Erkenntnisse sind sowohl für die Stressbiologie menschlicher Zellen von Bedeutung als auch für die Entwicklung von Nutzpflanzen mit erhöhter Resistenz gegen Trockenheit, dem wichtigsten Stressfaktor beim Anbau von Nahrungspflanzen. Bei seinen Untersuchungen kooperierte das Heidelberger Team unter Leitung von Prof. Dr. Rüdiger Hell und Dr. Markus Wirtz mit Forschern aus Frankreich und Norwegen. Die Veröffentlichung erfolgte in der Fachzeitschrift „Nature Communications“.

Proteine führen vielfältige Aufgaben für die Struktur, Funktion und Regulation in Zellen aus. Dazu werden sie nach ihrer Bildung für ihre Aufgaben durch gezielte Veränderungen angepasst.

„Eine der häufigsten Veränderungen ist die Anbringung eines Essigsäurerestes am Amino-terminalen Ende von Proteinen. Fehlt diese Veränderung vollständig, sind Pflanzen nicht überlebensfähig.

Bei einer fehlenden Veränderung an bestimmten Proteinen im Menschen kommt es zu Erkrankungen und Entwicklungsstörungen bis hin zum Zelltod“, erläutert Prof. Hell. Obwohl bis zu 80 Prozent der Proteine im Cytoplasma von menschlichen Zellen durch einen solchen Essigsäurerest verändert werden, sind die Aufgaben dieser Veränderung bislang nur für einige wenige Proteine untersucht.

Bei ihren Forschungen mit gentechnisch veränderten Pflanzen haben die Heidelberger Wissenschaftler eine Modifizierung in Form verringerter Essigsäurereste herbeigeführt und deren Folgen analysiert. „Das bislang als stabil angesehene Veränderungsmuster der Proteine durch Essigsäurereste wandelte sich überraschenderweise in großem Umfang.

Die gezielt gentechnisch veränderten Pflanzen erwiesen sich dabei als resistenter gegen Wassermangel“, so Dr. Wirtz. Dieser Effekt konnte auf die Wirkung des pflanzlichen Hormons Abscisinsäure zurückgeführt werden, das eine zentrale Rolle bei Trockenstress in Pflanzen spielt.

Die Resistenz gegen Wassermangel beruhte dabei auf der ständigen Aktivierung natürlicher Maßnahmen von Pflanzen gegen Trockenstress, wie dem Schließen der Spaltöffnungen und der Verlängerung der Primärwurzel.

Originalpublikation:
E. Linster, I. Stephan, W.V. Bienvenut, J. Maple-Grødem, L.M. Myklebust, M. Huber, M. Reichelt, C. Sticht, S. Geir Møller, T. Meinnel, T. Arnesen, C. Giglione, R. Hell, M. Wirtz: Downregulation of N-terminal acetylation triggers ABA-mediated drought responses in Arabidopsis. Nature Communications (17 Juli 2015), doi: 10.1038/ncomms8640

Kontakt:
Prof. Dr. Rüdiger Hell
Centre for Organismal Studies (COS)
Telefon (06221) 54-6284
ruediger.hell@cos.uni-heidelberg.de

Kommunikation und Marketing
Pressestelle
Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Tuberkulose: Neue Einblicke in den Erreger
10.10.2019 | Julius-Maximilians-Universität Würzburg

nachricht Nanostrukturen helfen, die Haftung von Krankenhauskeimen zu reduzieren
10.10.2019 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Wenn die Erde flüssig wäre

Eine heisse, geschmolzene Erde wäre etwa 5% grösser als ihr festes Gegenstück. Zu diesem Ergebnis kommt eine Studie unter der Leitung von Forschenden der Universität Bern. Der Unterschied zwischen geschmolzenen und festen Gesteinsplaneten ist wichtig bei die Suche nach erdähnlichen Welten jenseits unseres Sonnensystems und für das Verständnis unserer eigenen Erde.

Gesteinsplaneten so gross wie die Erde sind für kosmische Massstäbe klein. Deshalb ist es ungemein schwierig, sie mit Teleskopen zu entdecken und zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

Zukunft Bau Kongress 2019 „JETZT! Bauen im Wandel“

10.10.2019 | Veranstaltungen

Aktuelle Trends an den Finanzmärkten im Schnelldurchlauf

09.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Fraunhofer IZM setzt das E-Auto auf die Überholspur

11.10.2019 | Energie und Elektrotechnik

IVAM-Produktmarkt auf der COMPAMED 2019: Keine Digitalisierung in der Medizintechnik ohne Mikrotechnologien

11.10.2019 | Messenachrichten

Kryptografie für das Auto der Zukunft

11.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics