Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zellen rütteln und schütteln sich: Göttinger Wissenschaftler entdecken neuen Transportmechanismus in biologischen Zellen

30.05.2014

Ein internationales Forscherteam unter der Leitung der Universität Göttingen hat einen neuen Transportmechanismus in biologischen Zellen entdeckt.

 Die Wissenschaftler der Göttinger Fakultät für Physik, der Freien Universität Amsterdam und der Rice University im amerikanischen Houston benutzten eine neue Methode zum Abbilden und Verfolgen einzelner Moleküle in lebenden Zellen. Dabei stellten sie fest, dass Zellen mithilfe derselben Motorproteine, die auch für Muskelkontraktionen zuständig sind, ihr Inneres heftig und aktiv in Bewegung setzen können. Die Ergebnisse sind in der Fachzeitschrift Science erschienen.


Ein internationales Forscherteam unter der Leitung der Universität Göttingen hat einen neuen Transportmechanismus in biologischen Zellen entdeckt.

Foto: M. Leunissen, Dutch Data Design

Für wichtige Transportprozesse über lange Entfernungen wie beispielsweise die Versorgung der langen axonalen Fortsätze von Nervenzellen benutzen Zellen spezifische Mechanismen. Dieser Prozess erfordert eine aufwändige Kontrolle: Die Ladung muss verpackt und adressiert werden, mit Motoren versehen und auf die richtige Schiene gesetzt werden. Indem die Wissenschaftler spezielle extrem dünne Nanopartikel als leuchtende Markierung verwendeten, fanden sie nun heraus, dass Zellen neben dem komplexen auch einen einfacheren und ökonomischeren Mechanismus benutzen, um nicht-spezifische Transporte in ihrem Inneren zu beschleunigen.

„Genau wie man eine chemische Reaktion beschleunigt, indem man ein Reagenzglas schüttelt, können Zellen ihr Zytoskelett schütteln“, erläutert der Leiter der Studie, Prof. Dr. Christoph Schmidt vom III. Physikalischen Institut der Universität Göttingen. „Diese Aktivität führt dann zu einer effizienten Durchmischung des Zellinneren.“ Die neue Entdeckung führt nicht nur zu einem besseren Verständnis der Dynamik von Zellen, sondern könnte nach Ansicht der Wissenschaftler auch interessante Möglichkeiten für die künftige Entwicklung aktiver technischer Materialien aufzeigen.

Originalveröffentlichung: Nikta Fakhri et al. High resolution mapping of intracellular fluctuations using carbon nanotubes. Science 2014. Doi: 10.1126/science.1250170.

Kontaktadresse:
Prof. Dr. Christoph Schmidt
Georg-August-Universität Göttingen
Fakultät für Physik – III. Physikalisches Institut
Friedrich-Hund-Platz 1, 37077 Göttingen, Telefon (0551) 39-7740
E-Mail: christoph.schmidt@phys.uni-goettingen.de

Weitere Informationen:

http://www.uni-goettingen.de/de/3240.html?cid=4801 weitere Fotos
http://www.dpi.physik.uni-goettingen.de/de/science/people/211r125.html

Thomas Richter | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics