Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Winzige Nanomaschine absolviert erfolgreich Probefahrt

09.04.2018

Wissenschaftler der Universität Bonn und des Forschungszentrums caesar in Bonn haben mit Kollegen aus den USA aus Nanostrukturen eine winzige Maschine konstruiert, die sich auf einem Rad gezielt in eine bestimmte Richtung bewegen kann. Die Forscher verwendeten ringförmige Strukturen aus dem Erbgutmaterial DNA. Die Ergebnisse werden nun im Journal „Nature Nanotechnology“ vorgestellt.

Zu den Nanomaschinen zählen Strukturen aus komplexen Proteinen und Nukleinsäuren, die aus chemischer Energie gespeist gerichtete Bewegungen vollführen können. Das Prinzip ist aus natürlichen Vorbildern bekannt: Auch Bakterien bewegen sich zum Beispiel mit einer Geißel vorwärts. Das Team der Universität Bonn, des Forschungszentrums Caesar in Bonn und der University of Michigan (USA) nutzte Strukturen aus DNA-Nanoringen. Die zwei Ringe greifen wie bei einer Kette ineinander.


Modell der Nanomaschine: Die beiden ineinandergreifenden Ringe sind gut zu erkennen. In der Mitte befindet sich die T7-RNA-Polymerase.

© Julián Valero/caesar Bonn


Im Labor: Prof. Dr. Michael Famulok (links) und Dr. Julián Valero vom Life & Medical Sciences (LIMES)-Institut der Universität Bonn am Rasterkraftmikroskop.

© Foto: Volker Lannert/Uni Bonn

„Der eine Ring erfüllt die Funktion eines Rades, der andere treibt es wie ein Motor mit Hilfe von chemischer Energie an“, erklärt Prof. Dr. Michael Famulok vom Life & Medicale Sciences (LIMES)-Institut der Universität Bonn.

Das winzige Gefährt misst gerade einmal rund 30 Nanometer (Millionstel Millimeter). Den „Treibstoff“ stellt die so genannte „T7 RNA Polymerase“ bereit. An den als Motor dienenden Ring gekoppelt synthetisiert dieses Enzym anhand der DNA Sequenz einen RNA-Strang, und nutzt dabei frei werdende chemische Energie für die Drehbewegung des DNA Ringes.

„Mit fortschreitender Strecke wächst der RNA-Strang wie ein Bindfaden aus der RNA Polymerase heraus“, berichtet Erstautor Dr. Julián Valero aus Famuloks Team. Diesen immer länger werdenden RNA-Faden, der quasi als Abfallprodukt des Antriebs herausragt, nutzen die Forscher, um das winzige Mobil entlang von Markierungen auf einer Nanoröhrchen-Strecke zu halten.

Länge der Probefahrt beträgt 240 Nanometer

An diesem Faden befestigt legte die Einrad-Maschine auf ihrer Probefahrt etwa 240 Nanometer zurück. „Das war ein erster Aufschlag“, sagt Famulok. „Die Strecke lässt sich beliebig verlängern.“ Doch nicht nur die Weglänge wollen die Forscher als nächsten Schritt ausbauen, es sind auch kompliziertere Herausforderungen auf der Teststrecke geplant. An eingebauten Abzweigungen, soll sich die Nanomaschine entscheiden, welchen Weg sie einschlägt. „Wir können mit unseren Methoden vorbestimmen, welche Abzweigung die Maschine nehmen soll“, blickt Valero in die Zukunft.

Klar, die Wissenschaftler können dem winzigen Gefährt nicht mit bloßem Auge bei der Arbeit zusehen. Mit einem Rasterkraftmikroskop, das die Oberflächenstruktur der Nanomaschine abtastete, konnten die Wissenschaftler die ineinandergreifenden DNA-Ringe sichtbar machen. Darüber hinaus zeigte das Team mit Fluoreszenz-Markierungen, dass sich das „Rad“ der Maschine tatsächlich drehte.

Fluoreszierende „Streckenposten“ entlang des Nanoröhrchen-Weges leuchteten auf, sobald das Nano-Einrad sie passierte. Anhand dieser Daten ließ sich auch die Geschwindigkeit des Gefährts berechnen: Eine Umdrehung des Rades dauerte etwa zehn Minuten. Das ist nicht besonders schnell – für die Forscher aber ein großer Schritt. „Die Nanomaschine in die gewünschte Richtung zu bewegen, ist nicht trivial“, sagt Famulok.

Die Bestandteile der Maschine fügen sich automatisch zusammen

Anders als große Maschinen wurde die Nanomaschine der Bonner Wissenschaftler freilich nicht mit dem Schweißbrenner oder dem Schraubenschlüssel zusammengebaut. Die Konstruktion erfolgt nach dem Prinzip der Selbstorganisation. Wie in lebenden Zellen entstehen die gewünschten Strukturen spontan, wenn die entsprechenden Bestandteile zur Verfügung gestellt werden.

„Dies funktioniert wie bei einem imaginären Puzzle“, erläutert Famulok. Jedes Puzzleteilchen ist so gestaltet, dass es mit ganz speziellen Partnern wechselwirken kann. Bringt man genau diese Partner in einem Gefäß zusammen, findet jedes Teilchen seinen Wunschpartner und es entsteht automatisch die gewünschte Struktur.

Mittlerweile haben Wissenschaftler weltweit zahlreiche Nanomaschinen und Nanomotoren entwickelt. Aber bei der Methode von Famuloks Team handelt es sich um ein völlig neuartiges Prinzip. „Das ist ein großer Schritt: Es ist nicht einfach, so etwas in der Größenskala von Nanometern verlässlich zu designen und zu realisieren“, sagt der Wissenschaftler. Sein Team will demnächst noch komplexere Nano-Motor-Systeme entwickeln. „Es handelt sich dabei um Grundlagenforschung“, sagt Famulok.

„Wo sie hinführt, ist jetzt noch nicht genau abzusehen.“ Mit etwas Phantasie sind als mögliche Anwendungen zum Beispiel Computer denkbar, die logische Schritte anhand von Molekülbewegungen vollziehen. Außerdem könnten winzige Maschinen Medikamente durch die Blutbahn zielgenau zu den Wirkorten bringen. „Aber das sind noch Zukunftsvisionen“, sagt Famulok.

Publikation: Julián Valero, Nibedita Pal, Soma Dhakal, Nils G. Walter and Michael Famulok: A bio-hybrid DNA rotor-stator nanoengine that moves along predefined tracks, Nature Nanotechnology, DOI: 10.1038/s41565-018-0109-z

Kontakt:

Prof. Dr. Michael Famulok
Life & Medical Sciences (LIMES)-Institut
Universität Bonn
Tel. 0228/731787
E-Mail: m.famulok@uni-bonn.de

Bildzeilen:

Famulok_Lannert_003.JPG: Im Labor: Prof. Dr. Michael Famulok (links) und Dr. Julián Valero vom Life & Medical Sciences (LIMES)-Institut der Universität Bonn am Rasterkraftmikroskop. © Foto: Volker Lannert/Uni Bonn

cover_project_18_reflejo_cat_pressrelease: Modell der Nanomaschine: Die beiden ineinandergreifenden Ringe sind gut zu erkennen. In der Mitte befindet sich die T7-RNA-Polymerase. © Julián Valero/caesar Bonn

Sebastian Scherrer | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Nanomaschine Nanometer Polymerase RNA Rasterkraftmikroskop dna

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Antibiotikaresistenzen im Fokus der Forschung
12.12.2018 | Deutsches Zentrum für Infektionsforschung

nachricht Tödliche Kombination: Medikamenten-Cocktail dreht Krebszellen den Saft ab
12.12.2018 | Universität Basel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tödliche Kombination: Medikamenten-Cocktail dreht Krebszellen den Saft ab

Zusammen mit einem Blutdrucksenker hemmt ein häufig verwendetes Diabetes-Medikament gezielt das Krebswachstum – dies haben Forschende am Biozentrum der Universität Basel vor zwei Jahren entdeckt. In einer Folgestudie, die kürzlich in «Cell Reports» veröffentlicht wurde, berichten die Wissenschaftler nun, dass dieser Medikamenten-Cocktail die Energieversorgung von Krebszellen kappt und sie dadurch abtötet.

Das oft verschriebene Diabetes-Medikament Metformin senkt nicht nur den Blutzuckerspiegel, sondern hat auch eine krebshemmende Wirkung. Jedoch ist die gängige...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

Von „Frequenzkämmen“ spricht man bei speziellem Laserlicht, das sich optimal für chemische Sensoren eignet. Eine revolutionäre Technik der TU Wien erzeugt dieses Licht nun viel einfacher und robuster als bisher.

Ein gewöhnlicher Laser hat genau eine Farbe. Alle Photonen, die er abstrahlt, haben genau dieselbe Wellenlänge. Es gibt allerdings auch Laser, deren Licht...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

ICTM Conference 2019 in Aachen: Digitalisierung als Zukunftstrend für den Turbomaschinenbau

12.12.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungen

Eine Norm für die Reinheitsbestimmung aller Medizinprodukte

10.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Biofilme generieren ihre Nährstoffversorgung selbst

12.12.2018 | Interdisziplinäre Forschung

Tanz mit dem Feind

12.12.2018 | Physik Astronomie

Künstliches Perlmutt nach Mass

12.12.2018 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics