Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie sich natürliche Kanalproteine in künstlichen Membranen bewegen

03.06.2015

In künstlichen Membranen werden jeweils natürliche Kanalproteine eingebaut, um den Transport von Ionen und Molekülen sicherzustellen. Forschende der Universität Basel haben nun erstmals die Bewegung dieser Kanalproteine gemessen: Sie bewegen sich höchstens zehnmal langsamer als in ihrer natürlichen Umgebung, der Zellmembran. Die Erkenntnisse helfen der Weiterentwicklung von neuen Anwendungen wie Nanoreaktoren und künstlichen Organellen, berichten die Forschenden in der Fachzeitschrift «Nano Letters».

Die Membranen unserer Körperzellen sind nur etwa 4 bis 5 Nanometer dick und bestehen aus einer komplexen Mischung von Lipiden und spezifischen Membranproteinen, darunter Kanalproteinen.


Natürliche Kanalproteine bewegen sich seitlich in einer dicken künstlichen Membran, wobei sich diese um die Proteine herum komprimiert.

(Bild: Reprinted with permission from ACS)

Eine solche Zellmembran lässt sich als flüssige 2-D-Lösung beschreiben, in welcher sich die Komponenten seitlich bewegen können. Diese Bewegungen innerhalb der Membran sind von deren Flexibilität und Fluidität abhängig und bestimmen schliesslich die Funktionalität der Membran.

Frei bewegliche Kanalproteine

Chemiker des NCCR «Molecular Systems Engineering» um Prof. Wolfgang Meier und Prof. Cornelia Palivan von der Universität Basel haben nun drei verschiedene Kanalproteine in künstlichen Membranen von 9 bis 13 Nanometer Dicke eingebaut und dort erstmals deren Bewegungen gemessen.

Dafür stellten sie zunächst grosse Membranmodelle mit eingebetteten, gefärbten Kanalproteinen her; diese brachten sie auf eine Glasoberfläche und massen sie dann mittels einer Einzelmolekül-Messmethode, der sogenannten Fluoreszenz-Korrelations-Spektroskopie. Alle drei Kanalproteine konnten sich frei in den unterschiedlich dicken Membranen bewegen, wobei sie dies maximal zehnmal langsamer taten als in den Lipiddoppelschichten der natürlichen Umgebung.

Flexibilität nötig

In dickeren Membranen müssen sich die Bausteine der Membran (Polymere) um die Kanalproteine herum komprimieren können, um sich deren fixen Grösse anzupassen. Dafür müssen die Bausteine der Membran genug flexibel sein.

Dies wurde bereits theoretisch beschrieben und konnte nun von den Forschenden der Universität Basel erstmals experimentell gemessen werden: Je dicker die Membran, desto langsamer war die Bewegung des Kanalproteins im Vergleich zur Bewegung der Polymere selber, welche die Membran formen.

«Das Phänomen lässt sich durch eine lokale Fluiditätsverringerung beschreiben, die durch die Komprimierung der Polymere hervorgerufen wird», erläutert Erstautor Fabian Itel. Grundsätzlich ist aber das Verhalten der Kanalproteine in künstlichen Membranen vergleichbar zu jenem in ihrer natürlichen Umgebung, der Lipiddoppelschicht, wobei die Zeitskala der Bewegungen um etwa das Zehnfache tiefer liegt. Das Forschungsprojekt wurde vom Schweizerischen Nationalfonds und dem NCCR Molecular Systems Engineering finanziell unterstützt.

Originalbeitrag
Fabian Itel, Adrian Najer, Cornelia G. Palivan, and Wolfgang Meier
Dynamics of membrane proteins within synthetic polymer membranes with large hydrophobic mismatch
Nano Letters (2015), doi: 10.1021/acs.nanolett.5b00699

Weitere Auskünfte
Prof. Wolfgang Meier, Universität Basel, Departement Chemie, Tel. +41 61 267 38 02, E-Mail: wolfgang.meier@unibas.ch

Weitere Informationen:

https://www.unibas.ch/de/Aktuell/News/Uni-Research/Wie-sich-natuerliche-Kanalpro...

Olivia Poisson | Universität Basel

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie Darmbakterien das Herzinfarktrisiko beeinflussen
10.12.2018 | Berliner Institut für Gesundheitsforschung / Berlin Institute of Health (BIH)

nachricht Neues über ein Pflanzenhormon
07.12.2018 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Methode verpasst Mikroskop einen Auflösungsschub

Verspiegelte Objektträger ermöglichen jetzt deutlich schärfere Bilder / 20fach bessere Auflösung als ein gewöhnliches Lichtmikroskop - Zwei Forschungsteams der Universität Würzburg haben dem Hochleistungs-Lichtmikroskop einen Auflösungsschub verpasst. Dazu bedampften sie den Glasträger, auf dem das beobachtete Objekt liegt, mit maßgeschneiderten biokompatiblen Nanoschichten, die einen „Spiegeleffekt“ bewirken. Mit dieser einfachen Methode konnten sie die Bildauflösung signifikant erhöhen und einzelne Molekülkomplexe auflösen, die sich mit einem normalen Lichtmikroskop nicht abbilden lassen. Die Studie wurde in der NATURE Zeitschrift „Light: Science and Applications“ veröffentlicht.

Die Schärfe von Lichtmikroskopen ist aus physikalischen Gründen begrenzt: Strukturen, die näher beieinander liegen als 0,2 tausendstel Millimeter, verschwimmen...

Im Focus: Supercomputer ohne Abwärme

Konstanzer Physiker eröffnen die Möglichkeit, Supraleiter zur Informationsübertragung einzusetzen

Konventionell betrachtet sind Magnetismus und der widerstandsfreie Fluss elektrischen Stroms („Supraleitung“) konkurrierende Phänomene, die nicht zusammen in...

Im Focus: Drei Nervenzellen reichen, um eine Fliege zu steuern

Uns wirft so schnell nichts um. Eine Fruchtfliege kann dagegen schon ein kleiner Windstoß vom Kurs abbringen. Drei große Nervenzellen in jeder Hälfte des Fliegenhirns reichen jedoch aus, um die Fliege mit Hilfe visueller Signale wieder auf Kurs zu bringen.

Bewegen wir uns vorwärts, zieht die Umwelt in die entgegengesetzte Richtung an unseren Augen vorbei. Drehen wir uns, verschiebt sich das Bild der Umwelt im...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Drei Komponenten auf einem Chip

Wissenschaftlern der Universität Stuttgart und des Karlsruher Institutes für Technologie (KIT gelingt wichtige Weiterentwicklung auf dem Weg zum Quantencomputer

Quantencomputer sollen bestimmte Rechenprobleme einmal sehr viel schneller lösen können als ein klassischer Computer. Einer der vielversprechendsten Ansätze...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Eine Norm für die Reinheitsbestimmung aller Medizinprodukte

10.12.2018 | Veranstaltungen

Fachforum über intelligente Datenanalyse

10.12.2018 | Veranstaltungen

Plastics Economy Investor Forum: Treffpunkt für Innovationen

10.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Klein und vielseitig: Schlüsselorganismen im marinen Stickstoffkreislauf nutzen Cyanat und Harnstoff

10.12.2018 | Studien Analysen

Ungesundes Sitzen vermeiden: Stuhl erkennt Sitzposition und motiviert zur Änderung der Körperhaltung

10.12.2018 | Energie und Elektrotechnik

Eine Norm für die Reinheitsbestimmung aller Medizinprodukte

10.12.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics