Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Fische in Salzwasser überleben: Forscher untersuchen Wechselwirkung von Molekülen

26.10.2018

Für Seetiere ist es wichtig, dass der Druck in ihren Zellen – der sogenannte osmotische Druck – dem äußeren Wasserdruck entgegenwirkt, damit sie in Salzwasser überleben können. Ansonsten würden ihre Zellen implodieren oder explodieren. Forscher haben in der Vergangenheit herausgefunden, dass in der Zelle zwei Moleküle für die Kontrolle des Druckes verantwortlich sind. Diese werden Trimethylamin-N-oxid (TMAO) und Harnstoff genannt. Bisher war jedoch unklar, warum zwei unterschiedliche Moleküle notwendig sind. In einer internationalen Kollaboration haben Forscher des Max-Planck-Instituts für Polymerforschung dieses Rätsel nun gelöst.

TMAO und Harnstoff sind Moleküle, die den osmotischen Druck in lebenden Zellen beeinflussen, sogenannte Osmolyte. Durch eine hohe Konzentration von TMAO und Harnstoff können Seetiere den osmotischen Druck in ihren Zellen auf einem Wert halten, der vergleichbar mit dem des umgebenden Salzwassers ist. Zusätzlich zu ihrer osmotischen Wirkung haben die beiden Moleküle noch Nebeneffekte auf die in den Zellen vorhandenen Proteine. Auf der einen Seite destabilisiert Harnstoff die Proteine in den Zellen und sorgt damit für ein Absterben der Zellen. Auf der anderen Seite stabilisiert eine nicht zu große Menge TMAO die Proteine.


Forscher studieren die molekularen Prozesse, mit denen Fische sich an die rauhen Bedingungen in Salzwasser anpassen können

© Y. Nagata / MPI-P

In lebenden Zellen sind sowohl TMAO als auch Harnstoff in einem Verhältnis von 1:2 (TMAO:Harnstoff) zu finden, und es wird angenommen dass beide Moleküle eine Bindung ausbilden. Während jedes einzelne Molekül auf die Proteine einer Zelle stabilisierend bzw. destabilisierend wirkt, wechselwirkt die Kombination der beiden Moleküle nicht mehr mit den Proteinen – der Effekt wird also durch die Verbindung der Moleküle aufgehoben.

Die Wissenschaftler des Max-Planck-Instituts für Polymerforschung haben nun zusammen mit Wissenschaftlern aus Japan, China und den USA untersucht, wie genau sich die beiden Moleküle verbinden. Bisher wurde davon ausgegangen, dass sich die beiden Moleküle durch eine Wechselwirkung des in Harnstoff vorhandenen Wasserstoff-Atoms sowie des in TMAO vorhandenen Sauerstoff-Atoms durch sogenannte Wasserstoffbrückenbindungen verbinden. Im Gegensatz dazu haben andere experimentelle Untersuchungen gezeigt, dass die beiden Moleküle keine Wasserstoffbrückenbindungen auszubilden scheinen.

Um das Rätsel zu lösen haben die Forscher nun die intermolekularen Wechselwirkungen sowohl theoretisch als auch experimentell untersucht. In ihrer Arbeit haben sie in Wasser gelöste TMAO- und Harnstoff-Moleküle untersucht. Dies stellte eine erste Herausforderung dar, da die Moleküle sich in Wasser schnell bewegen und daher eine Messung der molekularen Bindungen schwierig ist. Daher haben die Forscher zunächst Computersimulationen der beiden Moleküle durchgeführt, um hiermit die Bindungseigenschaften theoretisch zu beschreiben.

Um ihre theoretischen Ergebnisse zu bestätigen haben die Wissenschaftler im Anschluss daran spektroskopische Messungen im Infrarotbereich sowie magnetresonanzspektroskopische Messungen durchgeführt, die sie mit den theoretischen Ergebnissen vergleichen konnten.

Basierend auf der Übereinstimmung von Messung und Simulation stellten die Forscher fest, dass TMAO und Harnstoff keine Wasserstoffbrückenbindungen ausbilden, wenn sie in Wasser gelöst werden. Sie konnten zeigen, dass das Sauerstoff-Atom von TMAO nicht mit dem Wasserstoff-Atom von Harnstoff wechselwirkt, jedoch eine Bindung mit dem Wasserstoff-Atom von Wasser eingeht.

Daher ist das Sauerstoff-Atom von TMAO bereits mit Wasser verbunden, steht also nicht mehr für eine Verbindung mit Harnstoff zur Verfügung. Um die interzellulären Proteine jedoch zu schützen müssen sich beide Moleküle trotzdem verbinden – jedoch, wie die Forscher zeigen konnten – durch eine Verbindung an einer anderen Stelle des TMAO-Moleküls, die einen wasserabweisenden (hydrophoben) Charakter hat.

Das molekulare Verständnis, wie Moleküle in Zellen die Struktur von Proteinen kontrollieren, ist der Schlüssel zum Verständnis der biologischen Wirkung dieser Moleküle. Die Resultate ihrer Forschung haben die Wissenschaftler nun in dem Journal „Chem“ veröffentlicht.

Max-Planck-Institut für Polymerforschung

Das Max-Planck-Institut für Polymerforschung (MPI-P) zählt zu den international führenden Forschungszentren auf dem Gebiet der Polymerforschung. Durch die Fokussierung auf weiche Materie und makromolekulare Materialien ist das MPI-P mit seiner Forschungsausrichtung weltweit einzigartig. Seine Aufgabe ist es, neue Polymere herzustellen und zu charakterisieren. Zum Aufgabengebiet gehört auch die Untersuchung ihrer physikalischen und chemischen Eigenschaften. Das MPI-P wurde 1984 gegründet. Es beschäftigt mehr als 500 Mitarbeiterinnen und Mitarbeiter aus dem In- und Ausland, von denen die große Mehrzahl mit Forschungsaufgaben befasst ist.

Wissenschaftliche Ansprechpartner:

Dr. Yuki Nagata | Molekulare Spektroskopie | nagata@mpip-mainz.mpg.de
Dr. Johannes Hunger | Molekulare Spektroskopie | hunger@mpip-mainz.mpg.de

Originalpublikation:

https://doi.org/10.1016/j.chempr.2018.08.020

Weitere Informationen:

https://asunaroyuki.wixsite.com/sstgroup - Webseite von Dr. Yuki Nagata
https://www.mpip-mainz.mpg.de/liquid-dynamics - Webseite von Dr. Johannes Hunger

Dr. Christian Schneider | Max-Planck-Institut für Polymerforschung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bessere Immuntherapie bei Hepatitis B
17.01.2019 | Universität Duisburg-Essen

nachricht Neue Methode zur Synthese komplexer Moleküle
17.01.2019 | Justus-Liebig-Universität Gießen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende optische Katzen für die Quantenkommunikation

Gleichzeitig tot und lebendig? Max-Planck-Forscher realisieren im Labor Erwin Schrödingers paradoxes Gedankenexperiment mithilfe eines verschränkten Atom-Licht-Zustands.

Bereits 1935 formulierte Erwin Schrödinger die paradoxen Eigenschaften der Quantenphysik in einem Gedankenexperiment über eine Katze, die gleichzeitig tot und...

Im Focus: Flying Optical Cats for Quantum Communication

Dead and alive at the same time? Researchers at the Max Planck Institute of Quantum Optics have implemented Erwin Schrödinger’s paradoxical gedanken experiment employing an entangled atom-light state.

In 1935 Erwin Schrödinger formulated a thought experiment designed to capture the paradoxical nature of quantum physics. The crucial element of this gedanken...

Im Focus: Implantate aus Nanozellulose: Das Ohr aus dem 3-D-Drucker

Aus Holz gewonnene Nanocellulose verfügt über erstaunliche Materialeigenschaften. Empa-Forscher bestücken den biologisch abbaubaren Rohstoff nun mit zusätzlichen Fähigkeiten, um Implantate für Knorpelerkrankungen mittels 3-D-Druck fertigen zu können.

Alles beginnt mit einem Ohr. Empa-Forscher Michael Hausmann entfernt das Objekt in Form eines menschlichen Ohrs aus dem 3-D-Drucker und erklärt: «Nanocellulose...

Im Focus: Nanocellulose for novel implants: Ears from the 3D-printer

Cellulose obtained from wood has amazing material properties. Empa researchers are now equipping the biodegradable material with additional functionalities to produce implants for cartilage diseases using 3D printing.

It all starts with an ear. Empa researcher Michael Hausmann removes the object shaped like a human ear from the 3D printer and explains:

Im Focus: Roter Riesenvollmond in den Morgenstunden des 21. Januar

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg - Frühaufsteher sind diesmal im Vorteil: Wer am Morgen des 21. Januar 2019 vor 6:45 Uhr einen Blick an den Himmel wirft, kann eine totale Mondfinsternis bestaunen. Dann leuchtet der sonst so strahlende Vollmond zwischen den Sternbildern Zwillingen und Krebs glutrot.

Um das Finsternis-Spektakel in seiner gesamten Länge zu verfolgen, muss man allerdings sehr früh aus dem Bett: Kurz nach 4:30 Uhr beginnt der Mond sich langsam...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wie Daten und Künstliche Intelligenz die Produktion optimieren

16.01.2019 | Veranstaltungen

Unsere digitale Gesellschaft im Jahr 2040

16.01.2019 | Veranstaltungen

Superbeschleuniger im Fokus

16.01.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

So schnell erwärmen sich die Dauerfrostböden der Welt

16.01.2019 | Geowissenschaften

Wirken Strahlen besser mit Gold?

16.01.2019 | Förderungen Preise

Wie Daten und Künstliche Intelligenz die Produktion optimieren

16.01.2019 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics