Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Weniger Treibhausgase mit "Comammox"-Bakterien

23.04.2019

Der Stickstoff-Kreislauf der Erde wird vom Menschen, insbesonders durch Düngung in der industriellen Landwirtschaft, massiv beeinflusst. Zu den dramatischen Folgen gehört die Freisetzung von Lachgas, welches die Ozonschicht zerstört und ein fast 300-mal stärkeres Treibhausgas als Kohlendioxid ist. Ein internationales Forschungsteam unter Leitung von Holger Daims und Michael Wagner von der Universität Wien hat nun herausgefunden, dass die erst vor kurzem entdeckten "Comammox-Bakterien" viel weniger Lachgas freisetzen als andere Stickstoffdünger-umsetzende Mikroben – und somit von großem Interesse für eine umweltverträglichere Landwirtschaft sind.

Die moderne Landwirtschaft würde ohne stickstoffhaltige Dünger nicht funktionieren. Die intensive Düngung führt jedoch zu vielen Problemen: ein Großteil des Stickstoffs wird von den Pflanzen gar nicht aufgenommen, sondern durch das Zusammenspiel von mikrobieller Umsetzung und Niederschlägen aus den Böden ausgewaschen und landet schließlich in Flüssen, Seen und Meeren.


Elektronenmikroskopische Aufnahme eines Zell-Aggregats von Comammox-Bakterien der Art Nitrospira inopinata.

© Anne Daebeler, Universität Wien und Stefano Romano

Dort bewirkt der überschüssige Stickstoff die Eutrophierung (das "Umkippen") von Gewässern, mit dramatischen Folgen wie dem Absterben vieler Wasserlebewesen. Darüber hinaus wird bei der Umsetzung des Stickstoffs aus Düngemitteln durch Mikroorganismen, Distickstoffmonoxid (Lachgas) als Nebenprodukt freigesetzt, welches in die Atmosphäre entweicht und wesentlich zur Ozonzerstörung und globalen Erwärmung beiträgt.

Lachgas-Quelle Nitrifikation

Eine der häufigsten Stickstoff-Verbindungen in Kunstdüngern und Gülle ist Ammonium bzw. Harnstoff, der wiederum im Boden in Ammonium umgewandelt wird. Im Stickstoff-Kreislauf wird Ammonium von Mikroorganismen zuerst in giftiges Nitrit und anschließend in das etwas harmlosere Nitrat umgesetzt. Dieser zweistufige Prozess wird "Nitrifikation" genannt.

Im Zuge der Nitrifikation entsteht immer auch etwas Lachgas. Dessen Menge nimmt dramatisch zu, wenn den Mikroben, welche die Nitrifikation durchführen, buchstäblich die Luft ausgeht – bei Sauerstoffmangel setzen viele dieser "Nitrifikanten" große Mengen des gefährlichen Treibhausgases frei.

Dies geschieht nicht nur in gedüngten Böden insbesondere nach Niederschlägen, sondern auch in Kläranlagen, wo die Nitrifikation eine zentrale Rolle für die biologische Abwasserreinigung spielt. Selbst diese, für unser sauberes Wasser so wichtigen, Anlagen tragen somit zu den weltweiten Lachgas-Emissionen bei.

Comammox-Bakterien: Nitrifikation fast ohne Lachgas

Ein internationales Team unter der Leitung von Holger Daims und Michael Wagner, Mikrobiologen am neu gegründeten Zentrum für Mikrobiologie und Umweltsystemwissenschaft der Universität Wien, hat nun erstmals die Lachgas-Produktion eines "Comammox"-Bakteriums untersucht. Comammox-Bakterien ("complete ammonia oxidizers") wurden von dem Team erstmalig 2015 in einem Nature-Artikel beschrieben. Sie wandeln Ammonium ganz allein zu Nitrat um – andere Mikroben sind dazu auf Arbeitsteilung angewiesen, in der jeder Partner nur einen der zwei Schritte der Nitrifikation durchführt.

"Schon als wir die ersten Messwerte sahen, waren wir begeistert", so Holger Daims. "Die Comammox-Bakterien setzen viel weniger Lachgas frei als die meisten anderen Nitrifikanten, die bislang untersucht wurden". Michael Wagner fügt hinzu: "Selbst sauerstoffarme Bedingungen hatten darauf keinen Einfluss. Und die geringe Menge Lachgas erzeugen die Comammox-Bakterien gar nicht selbst – ihnen fehlen die dazu notwendigen Enzyme. Das Lachgas entsteht nur durch chemische Reaktionen aus Hydroxylamin, einer Substanz, die Comammox-Bakterien in ihre Umgebung abgeben."

Die geringe Lachgas-Freisetzung durch Comammox könnte für die Landwirtschaft und die Abwasserreinigung interessant werden. "Wenn es gelingt, gezielt das Wachstum von Comammox-Bakterien an Stelle der anderen Nitrifikanten zu fördern, lassen sich die Lachgas-Emissionen in Böden und Kläranlagen vielleicht vermindern.

Aber dafür muss noch Forschungsarbeit geleistet werden – schließlich wurden Comammox-Bakterien erst vor kurzem entdeckt und wir wissen wenig über die Bedingungen, welche sie für ein optimales Wachstum benötigen", erklärt Dimitri Kits, Erstautor der Studie. "Allein mit Comammox werden wir die Stickstoff-Problematik nicht lösen", meint Holger Daims. "Aber ihr gezielter Einsatz könnte wertvolle Beiträge leisten".

Die Studie über Comammox-Bakterien wurde von den Wiener ForscherInnen gemeinsam mit KooperationspartnerInnen in Deutschland und Kanada durchgeführt. Gefördert wurde sie vom Wissenschaftsfonds (FWF), dem European Research Council (ERC) (Advanced Grant "Nitricare"), sowie der Universität Wien im Rahmen der Forschungsplattform "Comammox".

Publikation in Nature Communications
"Low yield and abiotic origin of N2O formed by the complete nitrifier Nitrospira inopinata": K. Dimitri Kits, Man-Young Jung, Julia Vierheilig, Petra Pjevac, Christopher J. Sedlacek, Shurong Liu,
Craig Herbold, Lisa Y. Stein, Andreas Richter, Holger Wissel, Nicolas Brüggemann,
Michael Wagner, Holger Daims; in Nature Communications,
DOI: 10.1038/s41467-019-09790-x

http://doi.org/10.1038/s41467-019-09790-xXXX

Wissenschaftliche Ansprechpartner:

Prof. Dipl.-Biol. Dr. Holger Daims
Zentrum für Mikrobiologie und Umweltsystemwissenschaft
Universität Wien
1090 Wien, Althanstraße 14
T +43-1-4277-91204 sowie
daims@microbial-ecology.net

Prof. Dipl.-Biol. Dr. Michael Wagner
Zentrum für Mikrobiologie und Umweltsystemwissenschaft
Universität Wien
1090 Wien, Althanstraße 14
T +43-1-4277-91200
wagner@microbial-ecology.net

Stephan Brodicky | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.univie.ac.at/
https://medienportal.univie.ac.at/presse/aktuelle-pressemeldungen/detailansicht/artikel/weniger-treibhausgase-mit-comammox-bakterien/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nierenkrebs an der Wurzel packen
17.02.2020 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Schaffen Affengehirne das auch mit links?
17.02.2020 | Max-Planck-Institut für evolutionäre Anthropologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: Nanopartikel können Zellen verändern

Nanopartikel dringen leicht in Zellen ein. Wie sie sich dort verteilen und was sie bewirken, zeigen nun erstmals hochaufgelöste 3D-Mikroskopie-Aufnahmen an BESSY II. So reichern sich bestimmte Nanopartikel bevorzugt in bestimmten Organellen der Zelle an. Dadurch kann der Energieumsatz in der Zelle steigen. „Die Zelle sieht aus wie nach einem Marathonlauf, offensichtlich kostet es Energie, solche Nanopartikel aufzunehmen“, sagt Hauptautor James McNally.

Nanopartikel sind heute nicht nur in Kosmetikprodukten, sondern überall, in der Luft, im Wasser, im Boden und in der Nahrung. Weil sie so winzig sind, dringen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Flexibles Fügen und wandlungsfähige Prozessketten: der Schlüssel für effiziente Produktion

17.02.2020 | Interdisziplinäre Forschung

AgiloBat: Batteriezellen flexibel produzieren

17.02.2020 | Energie und Elektrotechnik

Nierenkrebs an der Wurzel packen

17.02.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics