Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wegweiser für Wächterzellen

15.02.2016

Die Wächterzellen des Immunsystems finden sich auch in den feinsten Kapillar-Verästelungen der Lymphgefässe zurecht. Forscherinnen und Forscher der ETH Zürich entdeckten nun den molekularen Wegweiser, der den Zellen hilft, die Richtung des nächsten Lymphknotens zu finden.

Das Lymphsystem ist die Rohrpost unserer Immunabwehr, die Lymphknoten dessen Schaltzentralen. In diesen Zentralen reifen Antikörper und Killerzellen heran, welche in unserem Körper befindliche Krankheitserreger zu bekämpfen vermögen.


Dendritische Zellen (grün) wandern durch lymphatische Kapillargefässe (rot; Mikroskopiebild).

ETH Zürich / Erica Russo

Informationen über solche Erreger gelangen über die Lymphgefässe dorthin. Eine Armada von dezentral im Gewebe stationierten Wächterzellen, Dendritische Zellen genannt, greift die Erreger auf. Über die Lymphgefässe gelangen diese Zellen in den nächsten Lymphknoten.

In den grösseren Lymphgefässen des Körpers werden die Dendritischen Zellen von der Lymphflüssigkeit mitgerissen. Nicht so in den feinsten, kapillaren Verästelungen der Lymphgefässe, welche das Gewebe durchdringen, in welchen die Dendritischen Zellen ihre Wanderung beginnen und wo der Lymphfluss zu schwach ist. Wie die Zellen dort dennoch vorwärtskommen, haben Immunologinnen der ETH Zürich nun aufgeklärt. Der Lymphfluss ist zwar auch in den Kapillargefässen am Zelltransport beteiligt, jedoch nur indirekt.

Bereits vor einigen Jahren beobachteten Cornelia Halin, Professorin am Institut für Pharmazeutische Wissenschaften, und ihre Kollegen unter dem Mikroskop, dass sich die Dendritischen Zellen in den Lymphkapillaren in einem verworrenen Zickzackkurs in Richtung eines Lymphknotens bewegen (siehe ETH-Life-Artikel [http://www.ethlife.ethz.ch/archive_articles/120809_Dendritische_Zellen_fb] vom 09.08.2012). Es ist eine aktive, wenn auch ineffiziente Vorwärtsbewegung. Halin spricht von Patrouillieren.

Botenstoff mit Dichtegradient

Doch wie finden die Dendritischen Zellen dabei die Richtung des nächstgelegenen Lymphknotens? Wie Erica Russo, Doktorandin in der Gruppe von Halin, nun bei Mäusen zeigen konnte, orientieren sich die Zellen in den Kapillaren anhand eines Botenstoffs mit der Bezeichnung CCL21. «Die Innenseite der Kapillarwand ist mit CCL21-Molekülen ausgekleidet, wobei deren Dichte in Richtung Lymphknoten zunimmt», erklärt Russo. Weil die Dendritischen Zellen einen Rezeptor für CCL21 besitzen, den Botenstoff also quasi «riechen» können, gelingt es ihnen, die Richtung zu finden.

Unter anderem mithilfe von Zellkulturexperimenten konnten die Wissenschaftlerinnen auch entschlüsseln, warum die Konzentration der CCL21-Wegweisermoleküle in Richtung Lymphknoten zunimmt. «Der extrem schwache Lymphfluss in den feinen Kapillargefässen reicht zwar nicht aus, um Zellen mitzureissen. Doch er reicht, um die nur schwach mit der Gefässwand wechselwirkenden Wegweisermoleküle in Richtung Lymphknoten zu bewegen», so Russo.

Warum die Dendritischen Zellen nicht etwa zielgerichtet durch die Kapillargefässe krabbeln, sondern einen unsteten Zickzackkurs verfolgen, ist im Moment unklar. Eine Hypothese, der Halin in weiterer Forschungsarbeit nachgehen möchte: Vielleicht tauschen die Zellen mit den Gefässwänden oder mit anderen Zellen Informationen aus, die für ihre Funktion als Wächterzellen des Immunsystems bedeutend sind.

Literaturhinweis

Russo E, Teijeira A, Vaahtomeri K, Willrodt AH, Bloch JS, Nitschké M, Santambrogio L, Kerjaschki D, Sixt M, Halin C: Intralymphatic CCL21 Promotes Tissue Egress of Dendritic Cells through Afferent Lymphatic Vessels. Cell Reports 2016, doi: 10.1016/j.celrep.2016.01.048 [http://dx.doi.org/10.1016/j.celrep.2016.01.048]

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2016/02/wegweiser-...

Fabio Bergamin | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

Weitere Berichte zu: CCL21 ETH Killerzellen Lymphgefässe Lymphkapillaren Lymphknoten Zellen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers
18.10.2019 | Universität zu Köln

nachricht Das Rezept für eine Fruchtfliege
18.10.2019 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers

18.10.2019 | Biowissenschaften Chemie

Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp

18.10.2019 | Physik Astronomie

Innovative Datenanalyse von Fraunhofer Austria

18.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics