Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vorhof repariert Herzkammer

09.07.2013
Herzmuskelzellen wandern aus dem Vorhof in geschädigte Herzkammer und tragen so zur Regeneration bei

Wird das Herz infolge eines Infarktes nicht ausreichend mit Blut versorgt, stirbt Herzgewebe ab. Bei erwachsenen Menschen ist die Fähigkeit zur Selbstheilung kaum entwickelt.


Herzmuskelzellen aus dem Vorhof reparieren die geschädigte Herzkammer: 96 Stunden nach der Schädigung der Herzkammer sind eine große Zahl an Vorhofzellen (grün) aus dem Vorhof (A) in die Herzkammer (V) eingewandert. Zusammen mit den überlebenden Muskelzellen der Herzkammer (rot) kann die Herzkammer so wieder weitgehend funktionieren.
MPI f. Herz- und Lungenforschung

Wissenschaftler vom Max-Planck-Institut für Herz- und Lungenforschung in Bad Nauheim haben nun mit US-Kollegen am Embryo des Zebrabärblings beobachtet, dass Muskelzellen aus dem unbeschädigten Vorhof in die Herzkammer einwandern und so wesentlich zur Regeneration beitragen. Dies könnte Grundlage für neuartige Therapieansätze sein.

Gelingt es nach einem Herzinfarkt in der Klinik nicht schnell genug, die verschlossenen Herzkranzgefäße zu öffnen, wird bei diesen Patienten der Herzmuskel wegen der unterbrochenen Sauerstoffversorgung dauerhaft geschädigt. Die Folge ist unter anderem eine lebenslange Einschränkung der Herzfunktion bis hin zum Herzversagen.

Seit vielen Jahren suchen deshalb Wissenschaftler weltweit nach Möglichkeiten, die Regeneration von geschädigtem Herzgewebe zu stimulieren. Die Arbeitsgruppe von Didier Stainier vom Max-Planck-Institut für Herz- und Lungenforschung hat nun zusammen mit Wissenschaftlern der Universität in San Diego bei Zebrafischen einen neuartigen Mechanismus identifiziert, bei dem Zellen aus dem Vorhof aktiv in die geschädigte Muskulatur der Herzkammer einwandern und dort neues Gewebe bilden.

Für ihre Studie verwendeten die Max-Planck-Forscher gentechnisch veränderte Fischlarven, bei denen sich gezielt die Muskelzellen der Herzkammer durch die Gabe einer Substanz ausschalten ließen. Hierzu wählten die Forscher einen bestimmten Zeitpunkt des Embryonalwachstums aus, bei dem das Herz bereits aktiv war. Durch die Medikamentenbehandlung starben die Muskelzellen weitestgehend ab, so dass sich die Herzfunktion messbar verschlechterte.

Um das Verhalten der verschiedenen Zellarten verfolgen zu können, waren zudem die Herzmuskelzellen mittels weiterer gentechnischer Eingriffe so verändert, dass Zellen aus dem Vorhof und der Herzkammer jeweils unterschiedlich leuchteten. „Auf diese Weise waren wir in der Lage, in einem konfokalen Mikroskop das Verhalten der einzelnen Zelltypen kontinuierlich verfolgen“, erläutert Didier Stainier, der am Max-Planck-Institut Direktor der Abteilung „Genetik der Entwicklung“ ist.

„Wenige Stunden nach der Medikamentenbehandlung leuchteten im Ventrikel nur noch wenige Zellen rot und die Herzkammer war deutlich geschrumpft; beides Hinweise auf das Absterben der Muskelzellen“, so Stainier. Bereits 24 Stunden später habe das Leuchten wieder deutlich zugenommen. Dies sei ein Hinweis auf eine Zellteilungsaktivität von überlebenden Zellen in der Herzkammer.

Eine derartige Regenerationsfähigkeit beim Zebrafisch ist seit längerem bekannt. Die eigentliche Überraschung war allerdings, dass zunehmend grün leuchtende Muskelzellen aus dem Vorhof in die Herzkammer einwanderten. Wenige Tage nach der Schädigung des Muskelgewebes leuchten weite Teile des Ventrikels grün.

In weiteren Untersuchungen fanden die Wissenschaftler dann deutliche Hinweise auf eine sogenannte Transdifferenzierung von Muskelzellen: Die Muskelzellen aus dem Vorhof des Fischherzens verlieren zunächst ihre charakteristischen Eigenschaften, um anschließend im Zuge der Regeneration zu Herzkammerzellen zu werden. Mit dem Fortschreiten der Herzregeneration wurden diese Zellen fest in das Muskelgewebe eingebaut und leisteten ihren Beitrag zur Wiederherstellung der Herzfunktion.

Die Max-Planck-Forscher sehen in ihrer Studie Potenzial für eine zukünftige Therapie. „Obwohl beim Menschen im Vorhof eine Zellpopulation gefunden wurde, die ein vergleichbares Verhalten an den Tag legt, ist es fraglich, ob das menschliche Herz eine vergleichbare Selbstheilungsfähigkeit besitzt“, sagt Stainier. Eine Lösung könnte aber sein, mit Hilfe einer Gentherapie derartige Umprogrammierungen von Zellen zu stimulieren und so die Selbstheilungskräfte des Herzens zu stärken.

Originalpublikation:
Ruilin Zhang, Peidong Han, Hongbo Yang, Kunfu Ouyang, Derek Lee, Yi-Fan Lin, Karen Ocorr, Guson Kang, Ju Chen, Didier Y. R. Stainier, Deborah Yelon & Neil C. Chi
In vivo cardiac reprogramming contributes to zebrafish heart regeneration.
Nature. 27. Jun 2013; 498(7455):497-501. doi: 10.1038/nature12322
Ansprechpartner:
Dr. Didier Stainier
Max-Planck-Institut für Herz- und Lungenforschung, Bad Nauheim
Telefon: +49 6032 705-1301
E-Mail: didier.stainier@­mpi-bn.mpg.de
Dr. Matthias Heil
Max-Planck-Institut für Herz- und Lungenforschung, Bad Nauheim
Telefon: +49 6032 705-1705
Fax: +49 6032 705-1704
E-Mail: matthias.heil@­mpi-bn.mpg.de

Dr Harald Rösch | Max-Planck-Institut
Weitere Informationen:
http://www.­mpi-bn.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Biomarker besser nachweisen: Bremer Forscher entwickeln neue Methode mit Mikrokapseln
14.08.2018 | Jacobs University Bremen gGmbH

nachricht Grönland: Tiefe des Schmelzwassereintrags beeinflusst Planktonblüte
14.08.2018 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Helfer bei der Zellreinigung

14.08.2018 | Biowissenschaften Chemie

Neue Oberflächeneigenschaften für holzbasierte Werkstoffe

14.08.2018 | Materialwissenschaften

Fraunhofer IPT unterstützt Zweitplatzierten bei SpaceX-Wettbewerb

14.08.2018 | Förderungen Preise

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics