Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Viren machen Verschaltungen von Nervenzellen sichtbar

09.11.2012
Max-Planck-Forscher lassen neuronale Verbindungen im intakten Gehirn fluoreszieren

Wie verlaufen die Nervenbahnen im Gehirn? Mit welchen anderen Nervenzellen tauschen Neuronen Informationen aus?


Unter dem Fluoreszenzmikroskop wird sichtbar, wo die Nervenzellen ihren Ursprung haben, die über eine Synapse mit den Körnerzellen im Riechkolben der Maus verschaltet sind: Die meisten der grün leuchtenden Zellen gehen vom diagonalen Broca-Band aus, ein kleinerer Teil entstammt dem piriformen Kortex.

© Martin Schwarz / Max-Planck-Institut für medizinische Forschung

Diese Fragen versuchen Neurowissenschaftler sowohl mithilfe von Tiermodellen als auch an Hirnpräparaten zu beantworten. Martin Schwarz und seine Kollegen vom Max-Planck-Institut für medizinische Forschung in Heidelberg beschreiten dafür einen neuen Weg: Sie nutzen Viren als Genfähren und bringen damit die Bauanleitung für fluoreszierende Proteine in ausgewählte Hirnbereiche, beispielsweise in den Riechkolben einer Maus.

Später können die Wissenschaftler in den intakten Hirnpräparaten nicht nur die Zellen identifizieren, die sie ursprünglich mit den Viren infiziert haben. Durch einen speziellen Trick bringen sie auch die Neuronen zum Leuchten, die mit diesen direkt verschaltet sind.

Projektionsneurone sind Nervenzellen, die mithilfe ihrer langen Axonen zwei entfernte Hirnzentren miteinander verbinden. Dies macht sie besonders interessant – und besonders schwer zu untersuchen: Denn wenn Wissenschaftler sich den Feinaufbau des Denkorgans anschauen wollen, tun sie dies häufig mit dem Mikroskop. Hierfür müssen sie die Hirnpräparate aber in dünne Scheiben schneiden, was ein Finden und Zuordnen der Gesamtheit dieser Projektionsneurone nahezu unmöglich macht. Die Gruppe um Martin Schwarz vom Max-Planck-Institut für medizinische Forschung in Heidelberg hat jetzt eine Methode entwickelt, mit deren Hilfe es den Forschern erstmals gelungen ist, alle monosynaptischen neuronalen Verbindungen einer Hirnregion im intakten Gehirn sichtbar zu machen.

Die Forscher infizierten zuerst Nervenzellen – die sogenannten Körnerzellen – im Riechkolben von Mäusen gleichzeitig mit drei verschiedenen Viren. Die Viren transportieren eine Reihe fremder Gene in die Zellen, die sie damit zum Leuchten bringen. Das Gen für einen grünen Farbstoff gelangt über ein modifiziertes Tollwutvirus in die Nervenzellen. Dieses Virus kann aber nur Zellen befallen, die einen bestimmten Rezeptor auf ihrer Oberfläche besitzen. Um die Zielzellen dazu zu bringen, den Rezeptor zu produzieren, schleusten die Wissenschaftler das entsprechende Gen über ein zweites Virus ein. Dieses hatte zusätzlich ein Gen für einen weiteren, roten Farbstoff im Gepäck. Mit einem dritten Virus kam darüber hinaus ein Gen für ein spezielles Virusprotein in die Neuronen. Dessen Produkt versetzt das modifizierte Tollwutvirus in die Lage, sich im Nervensystem über Synapsen hinweg zu bewegen, von dieser postsynaptischen in präsynaptische Zellen.

Um nun die Gehirne zur Erkennung der Farbmarker in mikroskopischen Untersuchungen transparent zu machen, wurden die infizierten Gehirne mit einer Chemikalie behandelt, die dem Gewebe das Wasser entzieht. Nervenzellen, die mit allen drei Viren infiziert waren leuchteten wie erwartet gelb: Sie stellen also sowohl den grünen als auch den roten Farbstoff her. Mit ihnen verbundene präsynaptische Neurone konnten die Wissenschaftler an ihrer grünen Farbe erkennen. Sie verfolgten den Ursprung dieser Zellen und bemerkten, dass mit etwa 60 Prozent der Großteil der präsynaptischen Neurone von einer Region im Hypothalamus ausging, dem diagonalen Broca-Band. „Das war eine große Überraschung, denn bisher war bekannt, dass nur etwa 16 Prozent der Nervenzellen, die mit Körnerzellen verknüpft sind, ihren Ursprung in dieser Hirnregion haben“, sagt Martin Schwarz, der die Studie leitete. Welche Bedeutung diese Erkenntnis hat, untersucht das Team derzeit in einer Folgestudie. Die übrigen 40 Prozent der präsynaptischen Neuronen verfolgten die Wissenschaftler zurück zum piriformen Kortex, einer Region der Hirnrinde, die Geruchsinformationen verarbeitet. Eigentlich hatten Schwarz und sein Team damit gerechnet, hier den Großteil der mit dem Riechkolben vernetzten Nervenzellen zu finden.

Wie die Forscher zeigten, sind in einer derartigen Gehirnpräparation noch weitere Untersuchungen möglich: So „wässerten“ sie die transparenten Gehirne, schnitten sie in dünne Scheiben und behandelten sie mit einem farbmarkierten Antikörper gegen den Neurotransmitter Acetylcholin, um cholinerge Nervenzellen mit roter Fluoreszenz zu versehen.

Martin Schwarz sieht einen großen Vorteil darin, die neue, virengestützten Methode zur Fluoreszenzmarkierung mit der konventionellen immunohistochemischen Färbung zu kombinieren: „So können wir die exakte Identität der miteinander verbundenen Nervenzellen bestimmen“, sagt Martin Schwarz.

Eine weiterführende Anwendungsmöglichkeit der neuen Technik sehen die Wissenschaftler in der Erforschung neuronaler Krankheiten wie der Epilepsie. So wollen sie untersuchen, wie sich die Verschaltungen im Gehirn von epileptischen Tieren ändern. Dadurch versprechen sie sich ein verbessertes Verständnis dafür, wie sich die Neuronen bei einem solchen Anfall neu organisieren.

Ansprechpartner
Dr. Martin Schwarz
Max-Planck-Institut für medizinische Forschung, Heidelberg
Telefon: +49 6221 486-130
Email: Martin.Schwarz@­mpimf-heidelberg.mpg.de
Dr. John Wray
Max-Planck-Institut für medizinische Forschung, Heidelberg
Telefon: +49 6221 486-277
Fax: +49 6221 486-351
Email: wray@­mpimf-heidelberg.mpg.de

Originalpublikation
Christian J. Niedworok, Inna Schwarz, Julia Ledderose, Günter Giese, Karl-Klaus Conzelmann und Martin Schwarz
Charting Monosynaptic Connectivity Maps by Two-Color Light-Sheet Fluorescence Microscopy

Cell Reports (2012)

Dr. Martin Schwarz | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/6614551/Fluoreszierendes_Mausgehirn

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wenn Hefen miteinander reden
16.08.2019 | Technische Universität Dresden

nachricht Neue Überlebensstrategie der Pneumokokken im Zentralnervensystem identifiziert
16.08.2019 | Universität Greifswald

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Laser für durchdringende Wellen: Forscherteam entwickelt neues Prinzip zur Erzeugung von Terahertz-Strahlung

Der „Landau-Niveau-Laser“ ist ein spannendes Konzept für eine ungewöhnliche Strahlungsquelle. Er hat das Zeug, höchst effizient sogenannte Terahertz-Wellen zu erzeugen, die sich zum Durchleuchten von Materialen und für die künftige Datenübertragung nutzen ließen. Bislang jedoch scheiterten nahezu alle Versuche, einen solchen Laser in die Tat umzusetzen. Auf dem Weg dorthin ist einem internationalen Forscherteam nun ein wichtiger Schritt gelungen: Im Fachmagazin Nature Photonics stellen sie ein Material vor, das Terahertz-Wellen durch das simple Anlegen eines elektrischen Stroms erzeugt. Physiker des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) waren maßgeblich an den Arbeiten beteiligt.

Ebenso wie Licht zählen Terahertz-Wellen zur elektromagnetischen Strahlung. Ihre Frequenzen liegen zwischen denen von Mikrowellen und Infrarotstrahlung. Sowohl...

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Crispr-Methode revolutioniert

Forschende der ETH Zürich entwickelten die bekannte Crispr/Cas-Methode weiter. Es ist nun erstmals möglich, Dutzende, wenn nicht Hunderte von Genen in einer Zelle gleichzeitig zu verändern.

Crispr/Cas ist in aller Munde. Mit dieser biotechnologischen Methode lassen sich in Zellen verhältnismässig einfach und schnell einzelne Gene präzise...

Im Focus: Wie schwingen Atome in Graphen-Nanostrukturen?

Innovative neue Technik verschiebt die Grenzen der Nanospektrometrie für Materialdesign

Um das Verhalten von modernen Materialien wie Graphen zu verstehen und für Bauelemente der Nano-, Opto- und Quantentechnologie zu optimieren, ist es...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gedanken rasen zum Erfolg: CYBATHLON BCI Series 2019

16.08.2019 | Veranstaltungen

Impfen – Kleiner Piks mit großer Wirkung

15.08.2019 | Veranstaltungen

Internationale Tagung zur Katalyseforschung in Aachen

14.08.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Laser für durchdringende Wellen: Forscherteam entwickelt neues Prinzip zur Erzeugung von Terahertz-Strahlung

16.08.2019 | Physik Astronomie

Solarflugzeug icaré testet elektrische Flächenendantriebe

16.08.2019 | Energie und Elektrotechnik

Neue Überlebensstrategie der Pneumokokken im Zentralnervensystem identifiziert

16.08.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics