Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Viren machen Verschaltungen von Nervenzellen sichtbar

09.11.2012
Max-Planck-Forscher lassen neuronale Verbindungen im intakten Gehirn fluoreszieren

Wie verlaufen die Nervenbahnen im Gehirn? Mit welchen anderen Nervenzellen tauschen Neuronen Informationen aus?


Unter dem Fluoreszenzmikroskop wird sichtbar, wo die Nervenzellen ihren Ursprung haben, die über eine Synapse mit den Körnerzellen im Riechkolben der Maus verschaltet sind: Die meisten der grün leuchtenden Zellen gehen vom diagonalen Broca-Band aus, ein kleinerer Teil entstammt dem piriformen Kortex.

© Martin Schwarz / Max-Planck-Institut für medizinische Forschung

Diese Fragen versuchen Neurowissenschaftler sowohl mithilfe von Tiermodellen als auch an Hirnpräparaten zu beantworten. Martin Schwarz und seine Kollegen vom Max-Planck-Institut für medizinische Forschung in Heidelberg beschreiten dafür einen neuen Weg: Sie nutzen Viren als Genfähren und bringen damit die Bauanleitung für fluoreszierende Proteine in ausgewählte Hirnbereiche, beispielsweise in den Riechkolben einer Maus.

Später können die Wissenschaftler in den intakten Hirnpräparaten nicht nur die Zellen identifizieren, die sie ursprünglich mit den Viren infiziert haben. Durch einen speziellen Trick bringen sie auch die Neuronen zum Leuchten, die mit diesen direkt verschaltet sind.

Projektionsneurone sind Nervenzellen, die mithilfe ihrer langen Axonen zwei entfernte Hirnzentren miteinander verbinden. Dies macht sie besonders interessant – und besonders schwer zu untersuchen: Denn wenn Wissenschaftler sich den Feinaufbau des Denkorgans anschauen wollen, tun sie dies häufig mit dem Mikroskop. Hierfür müssen sie die Hirnpräparate aber in dünne Scheiben schneiden, was ein Finden und Zuordnen der Gesamtheit dieser Projektionsneurone nahezu unmöglich macht. Die Gruppe um Martin Schwarz vom Max-Planck-Institut für medizinische Forschung in Heidelberg hat jetzt eine Methode entwickelt, mit deren Hilfe es den Forschern erstmals gelungen ist, alle monosynaptischen neuronalen Verbindungen einer Hirnregion im intakten Gehirn sichtbar zu machen.

Die Forscher infizierten zuerst Nervenzellen – die sogenannten Körnerzellen – im Riechkolben von Mäusen gleichzeitig mit drei verschiedenen Viren. Die Viren transportieren eine Reihe fremder Gene in die Zellen, die sie damit zum Leuchten bringen. Das Gen für einen grünen Farbstoff gelangt über ein modifiziertes Tollwutvirus in die Nervenzellen. Dieses Virus kann aber nur Zellen befallen, die einen bestimmten Rezeptor auf ihrer Oberfläche besitzen. Um die Zielzellen dazu zu bringen, den Rezeptor zu produzieren, schleusten die Wissenschaftler das entsprechende Gen über ein zweites Virus ein. Dieses hatte zusätzlich ein Gen für einen weiteren, roten Farbstoff im Gepäck. Mit einem dritten Virus kam darüber hinaus ein Gen für ein spezielles Virusprotein in die Neuronen. Dessen Produkt versetzt das modifizierte Tollwutvirus in die Lage, sich im Nervensystem über Synapsen hinweg zu bewegen, von dieser postsynaptischen in präsynaptische Zellen.

Um nun die Gehirne zur Erkennung der Farbmarker in mikroskopischen Untersuchungen transparent zu machen, wurden die infizierten Gehirne mit einer Chemikalie behandelt, die dem Gewebe das Wasser entzieht. Nervenzellen, die mit allen drei Viren infiziert waren leuchteten wie erwartet gelb: Sie stellen also sowohl den grünen als auch den roten Farbstoff her. Mit ihnen verbundene präsynaptische Neurone konnten die Wissenschaftler an ihrer grünen Farbe erkennen. Sie verfolgten den Ursprung dieser Zellen und bemerkten, dass mit etwa 60 Prozent der Großteil der präsynaptischen Neurone von einer Region im Hypothalamus ausging, dem diagonalen Broca-Band. „Das war eine große Überraschung, denn bisher war bekannt, dass nur etwa 16 Prozent der Nervenzellen, die mit Körnerzellen verknüpft sind, ihren Ursprung in dieser Hirnregion haben“, sagt Martin Schwarz, der die Studie leitete. Welche Bedeutung diese Erkenntnis hat, untersucht das Team derzeit in einer Folgestudie. Die übrigen 40 Prozent der präsynaptischen Neuronen verfolgten die Wissenschaftler zurück zum piriformen Kortex, einer Region der Hirnrinde, die Geruchsinformationen verarbeitet. Eigentlich hatten Schwarz und sein Team damit gerechnet, hier den Großteil der mit dem Riechkolben vernetzten Nervenzellen zu finden.

Wie die Forscher zeigten, sind in einer derartigen Gehirnpräparation noch weitere Untersuchungen möglich: So „wässerten“ sie die transparenten Gehirne, schnitten sie in dünne Scheiben und behandelten sie mit einem farbmarkierten Antikörper gegen den Neurotransmitter Acetylcholin, um cholinerge Nervenzellen mit roter Fluoreszenz zu versehen.

Martin Schwarz sieht einen großen Vorteil darin, die neue, virengestützten Methode zur Fluoreszenzmarkierung mit der konventionellen immunohistochemischen Färbung zu kombinieren: „So können wir die exakte Identität der miteinander verbundenen Nervenzellen bestimmen“, sagt Martin Schwarz.

Eine weiterführende Anwendungsmöglichkeit der neuen Technik sehen die Wissenschaftler in der Erforschung neuronaler Krankheiten wie der Epilepsie. So wollen sie untersuchen, wie sich die Verschaltungen im Gehirn von epileptischen Tieren ändern. Dadurch versprechen sie sich ein verbessertes Verständnis dafür, wie sich die Neuronen bei einem solchen Anfall neu organisieren.

Ansprechpartner
Dr. Martin Schwarz
Max-Planck-Institut für medizinische Forschung, Heidelberg
Telefon: +49 6221 486-130
Email: Martin.Schwarz@­mpimf-heidelberg.mpg.de
Dr. John Wray
Max-Planck-Institut für medizinische Forschung, Heidelberg
Telefon: +49 6221 486-277
Fax: +49 6221 486-351
Email: wray@­mpimf-heidelberg.mpg.de

Originalpublikation
Christian J. Niedworok, Inna Schwarz, Julia Ledderose, Günter Giese, Karl-Klaus Conzelmann und Martin Schwarz
Charting Monosynaptic Connectivity Maps by Two-Color Light-Sheet Fluorescence Microscopy

Cell Reports (2012)

Dr. Martin Schwarz | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/6614551/Fluoreszierendes_Mausgehirn

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen
20.07.2018 | Universitätsklinikum Heidelberg

nachricht Erwiesen: Mücken können tropisches Chikungunya-Virus auch bei niedrigen Temperaturen verbreiten
20.07.2018 | Bernhard-Nocht-Institut für Tropenmedizin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics