Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie viele Zellen verträgt unser Blut?

14.06.2012
Bioinformatiker der Universität Jena berechnen mit Einsteins Gleichung optimalen Hämatokritwert
„Blut ist dicker als Wasser“, sagt der Volksmund und hat damit sprichwörtlich Recht: Denn der lebensnotwendige Saft besteht fast zur Hälfte aus festen Bestandteilen. Den größten Anteil daran – insgesamt rund 40 Prozent des Blutes – haben die roten Blutzellen. Sie enthalten den roten Farbstoff Hämoglobin und sind für den Transport von Sauerstoff zuständig.

„Erstaunlich ist, dass dieser Anteil nicht nur bei allen Menschen in etwa gleich ist, sondern auch bei vielen anderen Wirbeltieren“, sagt Prof. Dr. Stefan Schuster von der Friedrich-Schiller-Universität Jena. Die Vermutung liege daher nahe, dass dieser Wert ein in der Evolution bewährtes Optimum darstelle. „Bei einem niedrigeren Volumenanteil der roten Blutzellen wird weniger Sauerstoff transportiert“, erklärt der Inhaber des Lehrstuhls für Bioinformatik der Biologisch-Pharmazeutischen Fakultät. „Bei einem höheren Anteil würde zwar der Sauerstofftransport erhöht. Da das Blut dann aber dickflüssiger wäre, würde gleichzeitig die Transportgeschwindigkeit sinken.“

Wie Prof. Schuster und sein Kollege Dr. Heiko Stark nun herausgefunden haben, lässt sich der optimale Hämatokritwert – der den Volumenanteil der roten Blutzellen angibt – mit einer Gleichung berechnen, die auf niemand Geringeren als Albert Einstein zurückgeht. Der geniale Forscher hatte sich neben Relativitätstheorie und Quantenphysik auch mit der Viskosität von Flüssigkeiten beschäftigt. „In der Fachliteratur gibt es bereits mehrere theoretische Ansätze zur Berechnung des optimalen Hämatokritwertes“, so Schuster. Die Bioinformatiker der Uni Jena haben untersucht, welche dieser Gleichungen am besten geeignet ist, die Abhängigkeit der Viskosität der Flüssigkeit (Blut) vom Volumenanteil der Partikel (Blutzellen) auszudrücken und wurden bei Einstein fündig. Ihre Ergebnisse haben die Jenaer Forscher in der aktuellen Ausgabe der Fachzeitschrift „Journal of Applied Physiology“ veröffentlicht (DOI: 10.1152/japplphysiol.00369.2012).

Demnach hängt die Viskosität einer Flüssigkeit von der Viskosität des Lösungsmittels und dem Volumenanteil ihrer festen Bestandteile ab. Außerdem enthält Einsteins Gleichung noch den Faktor 2,5. „Setzt man eine von Arrhenius vorgeschlagene Modifikation dieser Gleichung in die Gleichung für die Strömungsgeschwindigkeit ein und bestimmt das Maximum, erhält man ein Optimum von exakt 40 Prozent“, sagt Dr. Stark und rechnet vor: 1 geteilt durch 2,5 ist gleich 0,4 oder eben 40 Prozent. Der normale Hämatokrit des Menschen scheint also auch aus strömungsphysikalischer Sicht optimal zu sein. Das erkläre auch, warum sich derselbe Wert auch bei vielen Tierarten finden lässt, etwa bei Löwen, Antilopen, Ziegen, Elefanten und Kaninchen.

In ihrem Artikel haben die Bioinformatiker die experimentell ermittelten Hämatokrit-Werte von insgesamt 57 Wirbeltierarten aus der Literatur aufgeführt. „Darunter finden sich aber auch einige Abweichungen vom Optimum“, macht Stark deutlich. So liegt der Hämatokrit bei Robben mit 63 Prozent deutlich darüber. „Hier kommen vermutlich zusätzliche Kriterien zum Tragen.“ Zum Beispiel brauchen Meeressäuger wegen der langen Tauchzeiten eine größere Speicherkapazität für Sauerstoff.

Nebenbei stellen die Jenaer Forscher mit ihren Ergebnissen auch die illegale Praxis des Blutdopings im Sport in Frage. Dabei wird versucht, die Konzentration des sauerstofftransportierenden Hämoglobins im Blut und somit die Leistungsfähigkeit des Sportlers zu erhöhen. Dadurch steigt der Hämatokritwert künstlich an. „Doch das ist nicht nur kriminell, sondern ist, so folgt es aus unseren Berechnungen, auch vom physiologischen Effekt her mehr als fragwürdig“, resümiert Prof. Schuster.

Original-Publikation:
H. Stark, S. Schuster, Comparison of various approaches to calculating the optimal hematocrit in vertebrates, J. Appl. Physiol. 2012, DOI: 10.1152/japplphysiol.00369.2012

Kontakt:
Prof. Dr. Stefan Schuster, Dr. Heiko Stark
Lehrstuhl für Bioinformatik der Friedrich-Schiller-Universität Jena
Ernst-Abbe-Platz 2, 07743 Jena
Tel.: 03641 / 949580, 03641 / 949584
E-Mail: stefan.schu[at]uni-jena.de, heiko[at]starkrats.de

Dr. Ute Schönfelder | idw
Weitere Informationen:
http://www.uni-jena.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Hefe-Spezies in Braunschweig entdeckt
12.12.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

nachricht Urbane Gärten: Wie Agrarschädlinge von Städten profitieren
12.12.2019 | Senckenberg Forschungsinstitut und Naturmuseen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochgeladenes Ion bahnt den Weg zu neuer Physik

In einer experimentell-theoretischen Gemeinschaftsarbeit hat am Heidelberger MPI für Kernphysik ein internationales Physiker-Team erstmals eine Orbitalkreuzung im hochgeladenen Ion Pr9+ nachgewiesen. Mittels einer Elektronenstrahl-Ionenfalle haben sie optische Spektren aufgenommen und anhand von Atomstrukturrechnungen analysiert. Ein hierfür erwarteter Übergang von nHz-Breite wurde identifiziert und seine Energie mit hoher Präzision bestimmt. Die Theorie sagt für diese „Uhrenlinie“ eine sehr große Empfindlichkeit auf neue Physik und zugleich eine extrem geringe Anfälligkeit gegenüber externen Störungen voraus, was sie zu einem einzigartigen Kandidaten zukünftiger Präzisionsstudien macht.

Laserspektroskopie neutraler Atome und einfach geladener Ionen hat während der vergangenen Jahrzehnte Dank einer Serie technologischer Fortschritte eine...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: Wie Graphen-Nanostrukturen magnetisch werden

Graphen, eine zweidimensionale Struktur aus Kohlenstoff, ist ein Material mit hervorragenden mechanischen, elektronischen und optischen Eigenschaften. Doch für magnetische Anwendungen schien es bislang nicht nutzbar. Forschern der Empa ist es gemeinsam mit internationalen Partnern nun gelungen, ein in den 1970er Jahren vorhergesagtes Molekül zu synthetisieren, welches beweist, dass Graphen-Nanostrukturen in ganz bestimmten Formen magnetische Eigenschaften aufweisen, die künftige spintronische Anwendungen erlauben könnten. Die Ergebnisse sind eben im renommierten Fachmagazin Nature Nanotechnology erschienen.

Graphen-Nanostrukturen (auch Nanographene genannt) können, je nach Form und Ausrichtung der Ränder, ganz unterschiedliche Eigenschaften besitzen - zum Beispiel...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Humane Papillomviren programmieren ihre Wirtszellen um und begünstigen so die Hautkrebsentstehung

12.12.2019 | Medizin Gesundheit

Urbane Gärten: Wie Agrarschädlinge von Städten profitieren

12.12.2019 | Biowissenschaften Chemie

Die „Luft“ im Ozean wird dünner - Sauerstoffgehalte im Meerwasser gehen weiter zurück

12.12.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics