Ultraschneller Energietransfer innerhalb eines Wassertropfens

Die Forschung der letzten Jahre zeigt, dass nicht nur von außen auf biologisches Gewebe auftreffende Strahlung wie Röntgenstrahlung zu Schäden führen kann. Das Erbmolekül DNA lässt sich auch leicht durch niederenergetische Elektronen aufbrechen, die im Körper erst infolge der Bestrahlung entstehen.

Der Physiker Dr. Till Jahnke von der Goethe Universität hat am Berliner Elektronenspeicherring für Synchrotronstrahlung BESSY einen neuen Prozess entdeckt, bei dem solche Elektronen frei werden, wenn hoch energetische Strahlung im Körper auf Wasser trifft. Bei der Beurteilung von Strahlenschäden, aber auch der Dosierung von Strahlentherapien für Tumoren, könnte die Einbeziehung dieses Effekts künftig zu präziseren Einschätzungen führen. Für seine Arbeiten wurde Till Jahnke kürzlich mit dem mit 10.000 Euro dotierten Röntgenpreis der Justus Liebig Universität Gießen ausgezeichnet.

Ein erwachsener Mensch besteht zu 60 Prozent aus Wasser. Wird das Molekül aus einem Sauerstoff und zwei Wasserstoff-Atomen von energiereicher Strahlung getroffen, bricht es normalerweise auseinander und bildet mit einem benachbarten Wassermolekül ein positiv geladenes Hydronium-Ion, während ein negativ geladenes Hydroxid-Ion zurückbleibt. Der von Jahnke und seinen Kollegen entdeckte Prozess ist jedoch so schnell, dass er sich abspielt, bevor es zu dieser neuen Konfiguration kommt. „In einem Wassertropfen kann ein niederenergetisches Elektron, das DNA-Brüche verursacht, prinzipiell durch Strahlung jeder beliebigen Energie erzeugt werden“, erklärt Jahnke die bio-medizinische Bedeutung seines Forschungsergebnisses, das in der aktuellen Ausgabe der Fachzeitschrift „Nature Physics“ publiziert ist.

Bisher wurde der Prozess nur im Labor untersucht, und zwar an kleinsten Wassertropfen, die nur aus zwei Wassermolekülen bestehen. Mithilfe der hochenergetischen Synchroton-Strahlung des Berliner BESSY-Beschleunigers lösten die Physiker aus einer inneren Schale des einen Wassermoleküls ein Elektron heraus. Schnell sortierten sich die Elektronen um und füllten das Loch mit einem Elektron aus der äußeren Schale auf. Die dabei frei werdende Energie ging an das Nachbarmolekül und löste dort ein zweites Elektron heraus. Dieses Elektron hat typischerweise wenig Energie und kann Brüche in der DNA hervorrufen. „Dieser Prozess kann ebenso durch natürliche Strahlung ausgelöst werden“, sagt Jahnke.

Der als Interatomic Coulombic Decay (ICD) bezeichnete Prozess läuft innerhalb von 50 Femtosekunden ab. (Eine Femtosekunde ist der millionste Teil einer milliardstel Sekunde.) In der Physik ist ein schneller Prozess gleichbedeutend mit einem sehr wahrscheinlichen, so dass ICD in Wasser vermutlich ein sehr allgemeines Phänomen darstellt. Eine Berlin-Garchinger Kollaboration hat die Existenz des Effekts in einer eigenen Messung bestätigt. ICD könnte einen relevanten Beitrag zu Strahlenschäden in biologischer Materie leisten. Das wäre auch für die Strahlentherapie von Bedeutung, denn die Behandlung von Tumoren lässt sich umso gezielter und schonender gestalten, je genauer die verwendeten Modelle die Realität abbilden.

Informationen: Dr. Till Jahnke, Institut für Kernphysik, Campus Riedberg, Tel: (069)798-47025, jahnke@atom.uni-frankfurt.de.

Prof. Dr. Reinhard Dörner, Institut für Kernphysik, Campus Riedberg, Tel: (069)798-47003, dörner@atom.uni-frankfurt.de.

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt am Main. 1914 von Frankfurter Bürgern gegründet, ist sie heute eine der zehn größten Universitäten Deutschlands. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein einzigartiges Maß an Eigenständigkeit. Rund um das historische Poelzig-Ensemble im Frankfurter Westend entsteht derzeit für rund 600 Millionen Euro der schönste Campus Deutschlands. Mit über 50 seit 2000 eingeworbenen Stiftungs- und Stiftungsgastprofessuren nimmt die Goethe-Universität den deutschen Spitzenplatz ein. In drei Forschungsrankings des CHE in Folge und in der Exzellenzinitiative zeigte sie sich als eine der forschungsstärksten Hochschulen.

Herausgeber: Der Präsident
Abteilung Marketing und Kommunikation, Postfach 11 19 32,
60054 Frankfurt am Main
Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation Telefon (069) 798 – 2 92 28, Telefax (069) 798 – 2 85 30, E-Mail hardy@pvw.uni-frankfurt.de

Media Contact

Dr. Anne Hardy idw

Weitere Informationen:

http://www.uni-frankfurt.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer