Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Teamwork in der Zelle

23.03.2020

Erstmals blicken Forschende aus der Vogelperspektive auf die molekularen Vorgänge am Zellskelett, die für die Bewegung und Formveränderungen von Zellen wichtig sind. Ein Team am MDC zeigt in nature cell biology, wie Zellen solche Prozesse am richtigen Ort und zur richtigen Zeit koordinieren.

Das Zellskelett ist eine Dauerbaustelle: Es besteht aus Proteinfasern, die sich ständig dynamisch verlängern und verkürzen. Durch diese Umbauten kann die Zelle ihre Gestalt verändern oder sich bewegen.


So lenkt sie elementare Prozesse wie die Zellteilung oder Zelldifferenzierung oder auf höherer Ebene im Organismus Vorgänge wie die Embryonalentwicklung oder Wundheilung. Läuft auf den Zellskelettbaustellen etwas schief – zum Beispiel, wenn sich die Proteinfasern an der falschen Stelle zum falschen Zeitpunkt umbauen – führt dies zu Krankheiten.

Ein solcher Fehler in der räumlich-zeitlichen Kontrolle ist auch die Ursache dafür, dass metastasierende Krebszellen im Körper auf Wanderschaft gehen.

Forschende am Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft (MDC) und an weiteren Instituten, wie dem EMBL-EBI in Hinxton in Großbritannien, haben untersucht, wie eine Familie von 145 Proteinen diese Umbaumaßnahmen am richtigen Ort und zur richtigen Zeit veranlassen.

Diese Regulatorproteine haben Wissenschaftler*innen bislang nur in Einzelstudien erforscht, nur wenige Eiweiße wurden bereits charakterisiert. „Um derart komplexe Vorgänge wie Zellformveränderungen zu verstehen, müssen wir wissen, wie die Regulatorproteine im Kollektiv zusammenarbeiten. Es fehlte bislang sozusagen ein Blick aus der Vogelperspektive“, sagt Dr. Oliver Rocks, Leiter der Arbeitsgruppe „Räumlich-zeitliche Kontrolle der Rho-Protein-Signalwege“ am MDC und verantwortlicher Autor einer neuen Studie in der Fachzeitschrift nature cell biology.

Seine Arbeitsgruppe mit den Erstautor*innen Dr. Paul M. Müller und Dr. Juliane Rademacher hat gemeinsam mit der Gruppe von Dr. Evangelia Petsalaki am EMBL-EBI und einem internationalen Forschungsteam nun all diese Regulatorproteine systematisch charakterisiert. So konnte das Team zeigen, dass es innerhalb der Zelle verschiedene Signalzonen gibt, die das Zellskelett in Raum und Zeit koordinieren und wie diese Zonen entstehen und aufrechterhalten werden.

Ein neuer Blickwinkel dank umfangreicher Datenbank

Auf der Zellskelettbaustelle geben die Rho-GTPase-Proteine den Ton an. Sind diese molekularen Schalter aktiviert, senden sie Befehle an die Maschinerien auf den Baustellen. Es gibt wiederum 145 Regulatorproteine, die diese molekularen Schalter steuern: RhoGEF-Proteine schalten sie ein, RhoGAP-Proteine schalten sie aus.

Rocks und sein Team haben sich all diese Regulatoren nun zum ersten Mal systematisch angeschaut und eine Art Bibliothek erstellt. Forschende auf der ganzen Welt können nun darauf zugreifen und für jedes einzelne Protein nachschauen, welche molekularen Schalter es steuert, wo in der Zelle es vorkommt und welche Bindungspartner es hat.

Die umfangreichen Informationen in der Protein-Bibliothek erlauben erstmals eine Analyse der Proteine auf der Systemebene, d.h. einen Blick aus der Vogelperspektive. So sind neue kollektive Eigenschaften der Regulatoren zutage getreten, die zuvor unsichtbar waren. Auf diese Weise haben Forschende einen neuen Mechanismus entdecken, der erklärt, wie Zellmigration gesteuert wird.

Fokale Adhäsionen steuern die Balance zweier gegensätzlicher Prozesse

Bekannt war, dass zwei gegensätzliche, vom Zellskelett gesteuerte Prozesse räumlich voneinander getrennt in der Zelle stattfinden müssen, damit sich die Zelle fortbewegen kann: Zellvorschub und Zellkontraktion. Auf der einen Baustelle an der Zellfront geben die molekularen Schalter den Befehl für Zellvorschub in Migrationsrichtung.

Weiter dahinter, Richtung Zellinneres, lösen sie eine Kontraktion des Zellskeletts aus. Wie Rho-GTPasen diese beiden räumlich voneinander getrennten Prozesse koordinieren, war eine zentrale Frage im Forschungsfeld, mit der sich das Team am MDC beschäftigt hat.

Möglich sei die räumliche Organisation der zwei gegensätzlichen Prozesse durch fokale Adhäsionen, erklärt Rocks. Dies sind direkt unterhalb der Zellmembran gelegene Ansammlungen von Proteinen, die die Zelle mit der Umgebung verankern.

Fokale Adhäsionen entstehen nahe der Zellfront, reifen zu stabileren Strukturen und lösen sich letztlich wieder auf. Da die Zelle während der Migration über fokale Adhäsionen hinwegwandert, bewegen sich diese relativ zur Zelle von der Front zur Mitte hin.

„Die Zelle nutzt aus, dass die fokalen Adhäsionen ihren Ort verändern“, sagt Rocks. Sein Team habe zunächst einmal erstaunlich viele Regulatorproteine auf diesen Strukturen entdeckt. „Die eigentliche Überraschung aber war, dass wir an neu gebildeten fokalen Adhäsionen am Zellrand nahezu ausschließlich eine bestimmte Untergruppe von Regulatoren gefunden haben und eine andere Untergruppe, getrennt davon, auf reifen Strukturen Richtung Zellmitte.“

Diese Untergruppen kontrollieren die oben genannten gegensätzlichen Zellskelettprozesse und so entstünden die räumlich voneinander getrennten Signalzonen. Die Forschenden konnten zudem zeigen, dass beide Prozesse durch mechanische Kräfte in der Zelle gekoppelt werden, welche die Anzahl neu gebildeter und reifer fokaler Adhäsionen ausbalancieren können.

Als nächstes plant Rocks zu untersuchen, wie genau das Kollektiv der Rho-GTPase-Regulatoren auf den fokalen Adhäsionen mit der Zellskelettmaschinerie kommuniziert, ob das Prinzip der räumlichen Trennung dieser Proteine auch auf anderen Zellstrukturen eine Rolle spielt und wie eine fehlerhafte Funktion der Regulatoren letztendlich Krankheiten verursacht.

Diesen systemischen Blick auf die Regulation der Zellform zu erlangen sei eine große Anstrengung gewesen, findet Rocks. „Er war aber zwingend notwendig, um das Forschungsgebiet zu beleben und konzeptuell neue Forschungsansätze zu eröffnen“, sagt der Forscher. Die Datensammlung und Protein-Bibliothek stehen nun allen Wissenschaftler*innen weltweit zur Verfügung.

Wissenschaftliche Ansprechpartner:

Dr. Oliver Rocks
oliver.rocks@mdc-berlin.de

Originalpublikation:

Müller, Paul M. et al. (2020): “Systems analysis of RhoGEF and RhoGAP regulatory proteins reveals spatially organized RAC1 signalling from integrin adhesions”, nature cell biology, DOI: 10.1038/s41556-020-0488-x

Christina Anders | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft
Weitere Informationen:
http://www.mdc-berlin.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forschung gegen das Corona-Virus – Gewebemodelle für schnelle Wirkstofftests
08.04.2020 | Fraunhofer-Institut für Silicatforschung ISC

nachricht Mutation senkt Energieverschwendung bei Pflanzen
08.04.2020 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Technologien für Satelliten

Er kommt ohne Verkabelung aus und seine tragende Struktur ist gleichzeitig ein Akku: An einem derart raffiniert gebauten Kleinsatelliten arbeiten Forschungsteams aus Braunschweig und Würzburg. Für 2023 ist das Testen des Kleinsatelliten im Orbit geplant.

Manche Satelliten sind nur wenig größer als eine Milchtüte. Dieser Bautypus soll jetzt eine weiter vereinfachte Architektur bekommen und dadurch noch leichter...

Im Focus: The human body as an electrical conductor, a new method of wireless power transfer

Published by Marc Tudela, Laura Becerra-Fajardo, Aracelys García-Moreno, Jesus Minguillon and Antoni Ivorra, in Access, the journal of the Institute of Electrical and Electronics Engineers

The project Electronic AXONs: wireless microstimulators based on electronic rectification of epidermically applied currents (eAXON, 2017-2022), funded by a...

Im Focus: Belle II liefert erste Ergebnisse: Auf der Suche nach dem Z‘-Boson

Vor ziemlich genau einem Jahr ist das Belle II-Experiment angelaufen. Jetzt veröffentlicht das renommierte Journal Physical Review Letters die ersten Resultate des Detektors. Die Arbeit befasst sich mit einem neuen Teilchen im Zusammenhang mit der Dunklen Materie, die nach heutigem Kenntnisstand etwa 25 Prozent des Universums ausmacht.

Seit etwa einem Jahr nimmt das Belle II-Experiment Daten für physikalische Messungen. Sowohl der Elektron-Positron-Beschleuniger SuperKEKB als auch der...

Im Focus: Belle II yields the first results: In search of the Z′ boson

The Belle II experiment has been collecting data from physical measurements for about one year. After several years of rebuilding work, both the SuperKEKB electron–positron accelerator and the Belle II detector have been improved compared with their predecessors in order to achieve a 40-fold higher data rate.

Scientists at 12 institutes in Germany are involved in constructing and operating the detector, developing evaluation algorithms, and analyzing the data.

Im Focus: Wenn Ionen an ihrem Käfig rütteln

In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung. Um Energie freizusetzen, müssen sich Ionen – geladene Atome – in einer Flüssigkeit, wie bspw. Wasser, bewegen. Bisher war jedoch der präzise Mechanismus, wie genau sie sich durch die Atome und Moleküle der Elektrolyt-Flüssigkeit bewegen, weitgehend unverstanden. Wissenschaftler*innen des Max-Planck-Instituts für Polymerforschung haben nun gezeigt, dass der durch die Bewegung von Ionen bestimmte elektrische Widerstand einer Elektrolyt-Flüssigkeit sich auf mikroskopische Schwingungen dieser gelösten Ionen zurückführen lässt.

Kochsalz wird in der Chemie auch als Natriumchlorid bezeichnet. Löst man Kochsalz in Wasser lösen sich Natrium und Chlorid als positiv bzw. negativ geladene...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Flugplätze durch Virtual Reality unterstützen

08.04.2020 | Verkehr Logistik

Forschung gegen das Corona-Virus – Gewebemodelle für schnelle Wirkstofftests

08.04.2020 | Biowissenschaften Chemie

Kostengünstiges mobiles Beatmungsgerät entwickelt

08.04.2020 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics