Tauziehen in der Zelle verhindert Vergiftung

Ein Protein, zwei Einsatzorte (rechtes Bild): Wie Leuchtfarbstoffe sichtbar machen, befindet sich das Protein Ptc5 (magenta) nicht bloß in den Mitochondrien von Hefezellen (gestrichelt umrandet), sondern auch in den Peroxisomen, wo die Fluoreszenz durch Überlagerung weiß erscheint. Entfernt man das peroxisomale Transportsignal aus dem Protein, gelangt dieses nicht in das Organell (links). Foto: Autoren https://doi.org/10.1038/s41467-020-16146-3

Das Innere der Zellen von Pflanzen und Tieren – samt Menschen – besteht aus zahlreichen Organellen, das sind umhüllte Reaktionsräume für bestimmte Aufgaben, zum Beispiel Chloroplasten für die Photosynthese oder Mitochondrien für die Umwandlung von Energie; die Organellen sind von zähflüssigem Zytosol umgeben.

„Die Zellen können nur überleben und ihre Aufgaben erfüllen, wenn die Proteine korrekt auf die Organellen verteilt sind“, sagt der Biologe Thorsten Stehlik, der seine Doktorarbeit in der Arbeitsgruppe von Michael Bölker angefertigt hat und als Erstautor des Fachartikels firmiert.

Damit die Proteine an den richtigen Zielort gelangen, tragen sie spezielle Abschnitte, die sie als Bestandteil des einen oder anderen Organells ausweisen, beispielsweise Transportsignale – sie wirken wie Gepäckanhänger, die man Koffern auf Flugreisen anheftet.

Das Wissenschaftlerteam untersuchte in Hefezellen das Protein Ptc5, das gleich zwei solcher Abschnitte enthält: Der eine weist es als Bestandteil der Mitochondrien aus; der andere dient dem Transport zu einem weiteren Typ von Organellen, nämlich den Peroxisomen, die am Abbau von Fettsäuren beteiligt sind.

Die Forscher stellten fest: Das Protein liegt tatsächlich in beiden Organellen vor. In den Mitochondrien sitzt der Vorläufer von Ptc5 in der inneren Membran fest. Ein mitochondriales Enzym schneidet den äußeren Teil frei. „Diese Bearbeitung des Proteinvorläufers ist die Voraussetzung dafür, dass das Produkt zu den Peroxisomen transportiert wird“, erklärt Mitverfasser Johannes Freitag.

Die Autoren sprechen von einer Art molekularem Tauziehen zwischen Mitochondrium und dem direkt daneben liegenden Peroxisom. Doch wozu nimmt das Protein den Umweg über Mitochondrien, um in die Peroxisomen zu gelangen?

„Der biologische Sinn dieses Umwegs liegt offenbar darin, dass das Protein wie ein Zellgift wirkt, wenn es im Zytosol aktiv wird“, erläutert Michael Bölker, der die Forschungsarbeiten leitete.

Tatsächlich wiesen die Forscher nach, dass die Zellen sich kaum vermehren, wenn Ptc5 im Zytosol landet, statt in die Peroxisomen zu gelangen: Wird das Protein nicht an einem Ende festgehalten, so faltet es sich in seine aktive Form, die außerhalb des Organells Schaden anrichtet. Die Ergebnisse erlauben Einblicke in die Mechanismen, die Organellen in der Zelle miteinander in Kontakt bringen.

Michael Bölker lehrt Genetik in Marburg und amtiert als Vizepräsident der Philipps-Universität für Forschung und Internationales; er ist Mitglied im Sonderforschungsbereich 987 der Deutschen Forschungsgemeinschaft (DFG).

Neben seiner Arbeitsgruppe beteiligte sich der Proteomik-Spezialist Jörg Kahnt vom Max-Planck-Institut für terrestrische Mikrobiologie in Marburg an der zugrundeliegenden wissenschaftlichen Arbeit.

Die DFG, das hessische Forschungsförderprogramm LOEWE und die Nationale Wissenschaftsakademie Leopoldina unterstützten die Forschungsarbeiten finanziell.

Originalveröffentlichung: Thorsten Stehlik & al.: Peroxisomal targeting of a protein phosphatase type 2C via mitochondrial transit, Nature Communications 2020, DOI: https://doi.org/10.1038/s41467-020-16146-3

Weitere Informationen:
Ansprechpartner: Professor Dr. Michael Bölker,
Fachgebiet Genetik
Tel.: 06421 28-21536
E-Mail: boelker@biologie.uni-marburg.de

Dr. Johannes Freitag
Tel.: 06421 28-27080
E-Mail: johannes.freitag@biologie.uni-marburg.de

Media Contact

Johannes Scholten idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-marburg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer