Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Supraleitung: Widerstandslos bei Rekordtemperaturen

18.08.2015

Schwefelwasserstoff verliert seinen elektrischen Widerstand unter Hochdruck bei minus 70 Grad Celsius

Bei so hohen Temperaturen hat bislang noch kein Material Strom ohne Widerstand geleitet: Forscher des Mainzer Max-Planck-Instituts für Chemie und der Johannes Gutenberg-Universität Mainz beobachteten, dass Schwefelwasserstoff bei minus 70 Grad Celsius supraleitend wird – wenn sie die Substanz einem Druck von 1,5 Millionen Bar aussetzen.


Erstaunlich handlich ist die Apparatur, mit der extrem hohe Drücke erzeugt werden. Mit Inbus-Schrauben pressen die Forscher die metallene Zelle zusammen. Den Hochdruck halten nur Diamenten aus.

Thomas Hartmann

Das entspricht der Hälfte des Drucks im Inneren der Erde. Mit ihren Hochdruck-Experimenten haben die Mainzer Forscher nicht nur einen Rekord für die Hochtemperatur-Supraleitung aufgestellt, sie weisen mit ihren Erkenntnissen auch einen neuen Weg, auf dem sich möglicherweise Strom bei Raumtemperatur verlustfrei transportieren lässt.

Alltagstaugliche Supraleiter sind noch ein Traum vieler Festkörperphysiker. Bislang sind nur Materialien bekannt, die Strom bei sehr tiefen Temperaturen ohne elektrischen Widerstand und mithin verlustfrei leiten. So besetzten in puncto Sprungtemperatur – das ist die Temperatur, bei der ein Material seinen Widerstand verliert – bisher spezielle Kupferkeramiken, sogenannte Kuprate, die vorderen Plätze.

Der Rekord einer solchen Keramik liegt bei etwa minus 140 Grad Celsius unter normalem Luftdruck und minus 109 Grad Celsius unter hohem Druck. In den Keramiken tritt dabei eine spezielle, unkonventionelle Form der Supraleitung auf. Um die konventionelle Supraleitung zu erreichen, waren bisher sogar mindestens minus 234 Grad Celsius nötig.

Ein Team um Mikhael Eremets, Leiter einer Arbeitsgruppe am Max-Planck-Institut für Chemie, hat in Zusammenarbeit mit Forschern der Johannes Gutenberg-Universität Mainz die konventionelle Supraleitung jetzt bei minus 70 Grad Celsius beobachtet, und zwar in herkömmlichem Schwefelwasserstoff (H2S).

Um den Widerstand der unter normalen Bedingungen gasförmigen Substanz zu brechen, mussten die Wissenschaftler sie jedoch einem Druck von 1,5 Megabar, also 1,5 Millionen Bar aussetzen, wie sie in der neuesten Ausgabe des Wissenschaftsmagazins Nature erläutern.

Die Sprungtemperatur konventioneller Supraleitung kennt keine Grenze

„Mit unseren Experimenten haben wir einen neuen Rekord für die Temperatur aufgestellt, bei der ein Material supraleitend wird“, sagt Mikhael Eremets. Außerdem hat sein Team erstmals experimentell nachgewiesen, dass es konventionelle Supraleiter mit hoher Sprungtemperatur gibt. Theoretische Berechnungen hatten das unter anderem für H2S bereits vorhergesagt.

„Es ist vielversprechend, nach anderen Materialien zu suchen, in denen konventionelle Supraleitung bei hohen Temperaturen auftritt“, sagt der Physiker. „Denn für die Sprungtemperatur konventioneller Supraleiter gibt es theoretisch keine Grenze, und unsere Experimente lassen hoffen, dass es sogar bei Raumtemperatur Supraleitung gibt.“

Den extrem hohen Druck, der nötig ist, um H2S bei vergleichsweise moderaten Minusgraden supraleitend zu machen, erzeugten die Forscher in einer speziellen Druckkammer, die weniger als ein Kubikzentimeter groß ist. Durch zwei seitliche Diamantenspitzen, die wie Ambosse wirken, können sie den Druck auf die Probe stetig erhöhen. Die Zelle ist mit Kontakten versehen, um den elektrischen Widerstand der Probe zu messen. In einer anderen Hochdruckzelle können die Forscher zudem die magnetischen Eigenschaften eines Materials untersuchen, die sich bei der Sprungtemperatur ebenfalls ändern.

Nachdem die Forscher flüssigen Schwefelwasserstoff in eine solche Druckkammer gefüllt hatten, erhöhten sie den Druck auf die Probe schrittweise von etwa einem auf zwei Megabar und veränderten für jeden Druck auch die Temperatur. Dabei ermittelten sie in Messungen sowohl des Widerstands als auch der Magnetisierung die Sprungtemperatur des Materials. Die Messungen der Magnetisierung sind dabei aussagekräftiger, weil ein Supraleiter ideale magnetische Eigenschaften besitzt.

Wasserstoffatome begünstigen Supraleitung bei hoher Temperatur

Dass Schwefelwasserstoff unter hohem Druck seinen elektrischen Widerstand schon bei relativ hohen Temperaturen verliert, führen die Wissenschaftler vor allem auf eine Eigenschaft des Wasserstoffs zurück: Wasserstoffatome schwingen im Kristallgitter mit der höchsten Frequenz aller Elemente, weil Wasserstoff am leichtesten ist.

Da die Schwingungen des Kristallgitters die konventionelle Supraleitung vermitteln – und zwar desto effektiver, je schneller die Atome schwingen –, weisen Materialien mit viel Wasserstoff eine relativ hohe Sprungtemperatur auf. Außerdem treiben starke Bindungen zwischen den Atomen die Temperatur in die Höhe, bei der ein Material supraleitend wird. Beide Bedingungen sind in H3S erfüllt, und genau diese Verbindung bildet sich unter Hochdruck aus H2S.

Nun suchen Mikhael Eremets und sein Team nach Materialien mit noch höheren Sprungtemperaturen. Den Druck auf Schwefelwasserstoff über 1,5 Megabar hinaus zu erhöhen, hilft dabei nicht. Das haben theoretische Physiker nicht nur berechnet, das Mainzer Team hat dies nun auch experimentell bestätigt. Bei noch höherem Druck verändert sich das Gefüge der Elektronen nämlich so, dass die Sprungtemperatur wieder langsam sinkt.

Gesucht: wasserstoffreiche Materialien mit höherer Sprungtemperatur

„Ein offensichtlicher Kandidat für eine hohe Sprungtemperatur ist reiner Wasserstoff“, sagt Mikhael Eremets. „Man erwartet, dass er unter hohem Druck schon bei Raumtemperatur supraleitend wird.“ Mit ihm experimentiert sein Team bereits, doch die Versuche sind sehr schwierig, weil dafür Drücke von drei bis vier Megabar nötig sind.

„Unsere Untersuchung an Schwefelwasserstoff zeigt aber, dass viele wasserstoffreiche Materialien eine hohe Sprungtemperatur besitzen können“, so Eremets. Dabei ist es vielleicht auch ohne Hochdruck möglich, einen Hochtemperatur-Supraleiter zu finden, der diesen Namen auch gemessen am alltäglichen Temperaturgefühl verdient. Derzeit brauchen die Mainzer Forscher den hohen Druck, um Materialien, die wie Schwefelwasserstoff elektrisch isolierend wirken, in Metalle zu verwandeln. „Möglicherweise gibt es Polymere oder andere wasserstoffreiche Verbindungen, die sich auf andere Weise metallisch machen lassen und bei Raumtemperatur supraleitend werden“, sagt der Physiker. Ließen sich solche Materialien finden, gäbe es sie endlich: Supraleiter, die für eine breite technische Anwendung brauchbar sind.
SB/PH

Original Publikation:
Conventional superconductivity at 203 K at high pressures
Alexander Drozdov, Mikhail Eremets, Ivan Troyan, Vadim Ksenofontov, Sergii Shylin Nature, 17. August 2015

Weitere Informationen:

http://www.mpic.de/aktuelles/pressemeldungen/news/supraleitung-widerstandslos-be...

Dr. Susanne Benner | Max-Planck-Institut für Chemie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Chemischer Jonglage-Akt mit drei Teilchen
24.05.2019 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Antibiotika und ihre Systembiologie
24.05.2019 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Direkte Abbildung von Riesenmolekülen

Physiker am Max-Planck-Institut für Quantenoptik (MPQ) konnten riesige zweiatomige Moleküle erzeugen und mit einem hochaufgelösten Mikroskop direkt abbilden.

Die optische Auflösung einzelner Konstituenten herkömmlicher Moleküle ist aufgrund der kleinen Bindungslänge im Sub-Nanometerbereich bisher nicht möglich....

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: Geometrie eines Elektrons erstmals bestimmt

Physiker der Universität Basel können erstmals zeigen, wie ein einzelnes Elektron in einem künstlichen Atom aussieht. Mithilfe einer neu entwickelten Methode sind sie in der Lage, die Aufenthaltswahrscheinlichkeit eines Elektrons im Raum darzustellen. Dadurch lässt sich die Kontrolle von Elektronenspins verbessern, die als kleinste Informationseinheit eines zukünftigen Quantencomputers dienen könnten. Die Experimente wurden in «Physical Review Letters» und die Theorie dazu in «Physical Review B» veröffentlicht.

Der Spin eines Elektrons ist ein vielversprechender Kandidat, um als kleinste Informationseinheit (Qubit) eines Quantencomputers genutzt zu werden. Diesen Spin...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Optische Superlinsen aus Gold

Oldenburger Forscher entwickeln neues optisches Mikroskop mit extrem hoher Auflösung

Eine kegelförmige Spitze aus Gold bildet das Kernstück eines neuen, extrem leistungsfähigen optischen Mikroskops, das Oldenburger Wissenschaftler in der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Früherkennung 2.0: Mit Präzisionsmedizin Screeningverfahren weiterentwickeln

23.05.2019 | Veranstaltungen

Kindermediziner tagen in Leipzig

22.05.2019 | Veranstaltungen

Jubiläumskongress zur Radiologie der Zukunft

22.05.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Direkte Abbildung von Riesenmolekülen

24.05.2019 | Physik Astronomie

Antibiotika und ihre Systembiologie

24.05.2019 | Biowissenschaften Chemie

Kinderradiologie: Auf dem Weg zur nächsten technischen Revolution

24.05.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics