Schlüssel zur Robustheit von Pflanzen entdeckt

Forscherin im Labor Lunghammer – TU Graz

Ob Wind oder Wetter – Um vor Umwelteinflüssen geschützt zu sein, müssen Pflanzen gleichzeitig robust und biegsam sein. Für diese faszinierenden Struktureigenschaften ist die Pflanzenzellwand verantwortlich: Sie hält die Pflanze einerseits in Form, indem sie etwa den osmotischen Druck der Zelle ausgleicht, und schützt sie andererseits vor Pathogenen wie z.B. Bakterien, Viren oder Pilzbefall. Pflanzenzellwände sind größtenteils aus Polymeren und Zellulose, ein Polysaccharid, zusammengesetzt. Als Verknüpfungsagens haben Polysaccharide die Aufgabe, die langkettigen Polymere zu vernetzen und ein feinmaschiges, molekulares Netzwerk aus Strängen, sogenannte Fibrillen, zu bilden. Diese sind maßgeblich an der Zugfestigkeit der Pflanze beteiligt. Einer dieser Zuckerbausteine ist das verzweigtkettige Monosaccharid Apiose, abgeleitet vom lateinischen Wort Apium, einer Pflanzengattung, der z.B. Sellerie und Petersilie angehören, welche eine besonders hohe Konzentration des Monosaccharids aufweisen.
„Apiose beschäftigt die Pflanzenbiochemieforschung seit über hundert Jahren, da seine Funktion in der Pflanze bis heute kaum verstanden wurde. Außerdem wusste man bisher nicht über den biochemischen Mechanismus Bescheid, wie die Natur Apiose herstellt“, erklärt Bernd Nidetzky, wissenschaftlicher Leiter des Austrian Centre of Industrial Biotechnology (acib) und Leiter des Institutes für Biotechnologie und Bioprozesstechnik an der Technischen Universität Graz.

Ein Enzym führt vier Prozessschritte durch

Das acib und die TU Graz haben in Zusammenarbeit mit den Universitäten Pavia (Italien) und Barcelona (Spanien) entdeckt, wie Apiose von einem einzelnen Enzym namens UAXS (UDP-apiose/UDP-xylose Synthase) hergestellt wird. Erstmals ist es gelungen, den Mechanismus dieses Enzyms zur Gänze zu entschlüsseln. Die für die Enzymforschung bahnbrechenden Ergebnisse wurden kürzlich in der renommierten Fachzeitschrift Nature Catalysis publiziert. „Der aus der Kresse (Arabidopsis thaliana) isolierte Katalysator besitzt besondere Eigenschaften: Während die meisten biosynthetischen Prozesse für die Herstellung komplexer Moleküle mehrere Reaktionsschritte benötigen, katalysiert das UAXS-Enzym selektiv vier Reaktionsschritte“, zeigt sich Nidetzky begeistert. Dabei kann das Enzym Kohlenstoffbindungen sowohl spalten als auch gleichzeitig neue Bindungen erstellen. Daraus entsteht aus einem ursprünglich sechsförmigen Zuckermolekül (Hexose) ein strukturell umgebauter Fünffachzucker (Pentose). Das Enzym generiert damit neue Kohlenstoffverbindungen, die der Pflanze in weiterer Folge ihre Festigkeitseigenschaften verleihen. Die Aufklärung des Enzymmechanismus war nicht zuletzt durch eine stark interdisziplinäre Kooperation aus den Bereichen Enzymologie und Biokatalyse, Strukturbiologie und molekularer Modellierung möglich.

Neuer Einblick in die Fähigkeiten von Enzymen und deren Anwendung

Der ungewöhnliche und hochkomplexe Reaktionsverlauf der Apiose-Biosynthese eröffnet den Enzymologen zum einen faszinierende Einblicke in die molekulare Evolution von höheren Pflanzen. Zum anderen gibt sie Aufschluss darüber, wie einzelne Enzyme auch mehrstufige Prozesse koordinieren und zu einem Endprodukt führen können. Nidetzky: „Das Verstehen der Biogenese des Kohlenhydrates Apiose in Pflanzen liefert uns obendrein eine wichtige Grundlage für zukünftige industrielle Anwendungen, etwa die Herstellung wertvoller Zuckermoleküle als Basis möglicher Produkte wie Feinchemikalien oder neuartige Biopharmazeutika.“

Über acib
Das 2010 gegründete Austrian Centre of Industrial Biotechnology (acib) entwickelt neue, umweltfreundlichere und ökonomischere Prozesse für die Industrie (Biotech, Chemie, Pharma) und verwendet dafür die Methoden der Natur als Vorbild und die Werkzeuge der Natur als Hilfsmittel. Das acib, eine Non-Profit-Organisation, ist ein internationales Forschungszentrum für industrielle Biotechnologie mit Standorten in Graz, Innsbruck, Tulln, Wien, Linz (AUT), Bielefeld, Heidelberg und Hamburg (GER) sowie Pavia (ITA), Barcelona (ESP), Rzeszów (POL), Ljubljana (SLO), Canterbury (AUS), Neuseeland (NZL) und Hsinchu (TWN) und versteht sich als Partnerschaft von 150+ Universitäten und Unternehmen. Darunter bekannte Namen wie BASF, DSM, Sandoz, Lonza, G.L Pharma, Boehringer Ingelheim RCV, Jungbunzlauer and Evonik.
Am acib forschen und arbeiten derzeit 250+ Beschäftigte an mehr als 175 Forschungsprojekten.
Eigentümer des acib sind die Universitäten Innsbruck und Graz, die TU Graz, die Universität für Bodenkultur Wien sowie Joanneum Research. Gefördert wird das K2-Zentrum im Rahmen von COMET – Competence Centers for Excellent Technologies durch das BMVIT, BMWFW sowie die Länder Steiermark, Wien, Niederösterreich und Tirol. Das COMET-Programm wird durch die FFG abgewickelt.

Rückfragehinweise
Univ.Prof. Dipl.-Ing. Dr.techn. Bernd Nidetzky
CSO acib, Leiter am Institut für Biotechnologie und Bioprozesstechnik TU Graz
Phone: +43 316 873 8400
E-Mail: bernd.nidetzky@acib.at

Martin Walpot, MA
Austrian Centre of Industrial Biotechnology (acib)
Head of Public Relations and Marketing
Phone: +43 316 873 9312
E-Mail: martinwalpot@acib.at

https://www.nature.com/articles/s41929-019-0382-8

Media Contact

MA Martin Walpot idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.acib.at

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer