Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schlüssel-Mechanismus gegen Masern-Infektion gefunden

01.06.2012
Einer internationalen Forschergruppe unter Berner Führung ist ein Durchbruch bei der Erforschung von Paramyxo-Viren gelungen

Sie haben herausgefunden, wie sich diese Viren, die für eine Vielzahl schwerer Krankheiten wie etwa Masern verantwortlich sind, in die Zellen einschleusen. Damit haben sie einen möglichen Ansatz zur Bekämpfung dieser Viren gefunden.

Paramyxo-Viren befallen vor allem die Atemwege und lösen schwerwiegende Krankheiten aus – mit weltweiten gesundheitlichen und wirtschaftlichen Folgen sowohl für Menschen als auch für Tiere. Das Masern-Virus zum Beispiel ist in Entwicklungsländern auch heute noch für den Tod von über 120’000 Menschen pro Jahr verantwortlich. Das sogenannte Respiratorische-Synzytial-Virus (RSV) wiederum verursacht rund um den Globus Lungenentzündungen bei Säuglingen und Kleinkindern.

Bei Tieren ist es vor allem das Staupe-Virus, das eng mit dem Masernvirus verwandt ist und die Bestände von Raubtieren zu Wasser und zu Land dezimiert. Nun haben Forschende der Vetsuisse-Fakultät der Universität Bern zusammen mit Kolleginnen und Kollegen aus den USA und Schweden herausgefunden, wie die Viren in die Wirtszellen eindringen. Das Aufschlüsseln dieses Mechanismus bietet vielversprechende Möglicheiten für die Bekämpfung dieser breiten Virenspezies. Die Studie wurde im «Journal of Biological Chemistry» veröffentlicht.

Ein «Kleeblatt» mit gefährlicher Wirkung

Um die physikalische Barriere zu überwinden, die Wirtszellen vor krankmachenden Eindringlingen schützt, haben Paramyxo-Viren einen ausserordentlich effizienten «Zellöffnungs-Mechanismus» entwickelt. Dieser besteht aus zwei zusammenwirkenden Teilen: einem Bindungs-Protein und einem Fusions-Protein. Das Bindungs-Protein dockt zuerst an einen Rezeptor auf der Oberfläche der Wirts-zelle an. Diese Interaktion löst bestimmte Bewegungen innerhalb des Bindungs-Proteins aus, die wiederum das Fusions-Protein aktivieren. Dieses unterzieht sich einer Wandlung, die zur Bildung von Poren auf der Oberfläche der Wirtszelle führt. Das Virus kann daraufhin in die Wirtszelle eindringen.

Trotz jahrzehntelanger Forschung blieb bislang rätselhaft, wie genau das Bindungs-Protein das Fusions-Protein aktiviert. «Diese Unkenntnis verhinderte bisher ein volles ‹mechanistisches› Verständnis des Vorgangs, wie Paramyxo-Viren in die Zellen eindringen», sagt Philippe Plattet vom Departement Clinical Research and Veterinary Public Health der Vetsuisse-Fakultät Bern. Zusammen mit Kolleginnen und Kollegen aus der Pädiatrischen Medizin und auch der Wildtiermedizin gelang ihm nun die Entschlüsselung dieses Vorgangs.

Dieser besteht aus einem komplexen Zusammenspiel mehrerer Prozesse: Das Bindungs-Protein der Masern- und Staupe-Viren gleicht dabei einem vierblättrigen Kleeblatt, wobei jedes der vier «Blätter» einen eigenen «Halm» hat, die aber zu einem einzigen «Stängel» zusammengezwirbelt sind. Das Virus dockt nun zuerst mit den «Blättern» am Rezeptor der Wirtszelle an. Dadurch beginnt der Stängel zu «vibrieren», worauf sich die zusammengezwirbelten Halme aufdrehen. Diesen Mechanismus konnten die Forschenden nun erstmals beobachten. In der Forschung wurde bereits vermutet, dass der «Stängel-Bereich» des Bindungs-Proteins das Fusions-Protein aktiviert. Dass dies aber durch Bewegung geschieht, ist neu. «Wir gehen davon aus, dass das Vibrieren des Stängels dem Fusions-Protein signalisiert, seinerseits aktiv zu werden», sagt Philippe Plattet.

Da alle Paramyxo-Viren über sehr ähnliche Bindungs-Proteine verfügen, sind die Forschenden überzeugt, dass diese «Stängel-Bewegungen» allen Viren dieses Stammes gemeinsam sind. «Dies eröffnet grossartige Möglichkeiten für die Bekämpfung dieser Viren», sagt Plattet: «Wenn es gelingt, dieses Vibrieren zu stoppen, könnte auch das Eindringen in die Zellen verhindert werden, und damit auch alle damit verbundenen Krankheiten.»

Quellenangabe: Nadine Ader, Melinda A. Brindley, Mislay Avila, Francesco C. Origgi, Johannes P. M. Langedijk, Claes Örvell, Marc Vandevelde, Andreas Zurbriggen, Richard K. Plemper, and Philippe Plattet: Structural Rearrangements of the Central Region of the Morbillivirus Attachment Protein Stalk Domain Trigger F Protein Refolding for Membrane Fusion, Journal of Biological Chemistry, 11. Mai 2012, Vol. 287, No. 20, pp. 16324-16334, doi:10.1074/jbc.M112.342493

Nathalie Matter | Universität Bern
Weitere Informationen:
http://www.unibe.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Mister Raney bekommt Konkurrenz - Ein neuer Katalysator auf Nickel-Basis nutzt Nano-Strukturen
16.07.2018 | Leibniz-Institut für Katalyse e. V. an der Universität Rostock

nachricht Duftrezeptoren können viel mehr als nur riechen
16.07.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetische Wirbel: Erstmals zwei magnetische Skyrmionenphasen in einem Material entdeckt

Erstmals entdeckte ein Forscherteam in einem Material zwei unabhängige Phasen mit magnetischen Wirbeln, sogenannten Skyrmionen. Die Physiker der Technischen Universitäten München und Dresden sowie von der Universität zu Köln können damit die Eigenschaften dieser für Grundlagenforschung und Anwendungen gleichermaßen interessanten Magnetstrukturen noch eingehender erforschen.

Strudel kennt jeder aus der Badewanne: Wenn das Wasser abgelassen wird, bilden sie sich kreisförmig um den Abfluss. Solche Wirbel sind im Allgemeinen sehr...

Im Focus: Neue Steuerung der Zellteilung entdeckt

Wenn eine Zelle sich teilt, werden sämtliche ihrer Bestandteile gleichmässig auf die Tochterzellen verteilt. UZH-Forschende haben nun ein Enzym identifiziert, das sicherstellt, dass auch Zellbestandteile ohne Membran korrekt aufgeteilt werden. Ihre Entdeckung eröffnet neue Möglichkeiten für die Behandlung von Krebs, neurodegenerative Krankheiten, Alterungsprozessen und Virusinfektionen.

Man kennt es aus der Küche: Werden Aceto balsamico und Olivenöl miteinander vermischt, trennen sich die beiden Flüssigkeiten. Runde Essigtropfen formen sich,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

Materialien für eine Nachhaltige Wasserwirtschaft – MachWas-Konferenz in Frankfurt am Main

11.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mister Raney bekommt Konkurrenz - Ein neuer Katalysator auf Nickel-Basis nutzt Nano-Strukturen

16.07.2018 | Biowissenschaften Chemie

Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

16.07.2018 | Physik Astronomie

Rostocker Forscher testen neue Generation von Offshore-Windenergie-Anlagen

16.07.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics