Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Riesenprotein Titin hilft mit Knäuelmechanismus bei der Muskelkontraktion

09.02.2016

Das Riesenprotein Titin ist an der Muskelkontraktion beteiligt, berichten Forscher aus Bochum und New York in der Zeitschrift „Cell Reports“. Bislang ging man davon aus, dass die beiden Proteine Aktin und Myosin die dafür erforderliche mechanische Arbeit allein verrichten. Bestimmte Bereiche im Titin-Protein entfalten sich, wenn der Muskel gedehnt wird. Werden die Fasern anschließend kontrahiert, knäulen die Bereiche wieder zusammen. „Durch diesen Mechanismus können große Muskeln ein paar Kilogramm mehr stemmen“, sagt Prof. Dr. Wolfgang Linke von der Ruhr-Universität Bochum.

Das Riesenprotein Titin ist an der Muskelkontraktion beteiligt, berichten Forscher aus Bochum und New York in der Zeitschrift „Cell Reports“. Bislang ging man davon aus, dass zwei andere Proteine allein diese Aufgabe bewerkstelligen.


© Fotolia, Peter Atkins

Anders als bislang gedacht ist das Protein Titin nicht nur für die Elastizität der Muskeln verantwortlich, sondern hilft auch bei der Kontraktion.

Die Lehrbuchmeinung lautet: Filamente aus Aktin und Myosin gleiten aneinander vorbei und verrichten so die mechanische Arbeit, die es braucht, um die Muskelfaser zu verkürzen. „Wir haben gezeigt, dass ein weiterer Player beteiligt ist“, sagt Prof. Dr. Wolfgang Linke von der Medizinischen Fakultät der Ruhr-Universität Bochum.

Gemeinsam mit Kollegen von der Columbia University in New York zeigte er, dass das Protein Titin nicht nur für die Elastizität der Muskeln sorgt, wie bisher gedacht. Stattdessen sind bestimmte Bereiche dieses Riesenproteins auch an der mechanischen Arbeit bei der Muskelkontraktion beteiligt; sie heißen Immunglobulin-Domänen.

Titin: ein Gummiband mit Knoten

„Das Protein Titin muss man sich vorstellen wie ein elastisches Gummiband mit kleinen aufdröselbaren Knoten, den Immunglobulin-Domänen“, beschreibt Linke. Wird der Muskel gedehnt, entfalten sich diese Domänen. Kontrahiert der Muskel, knäulen sich die Immunglobulin-Domänen wieder zusammen und unterstützen so die aneinander vorbeigleitenden Proteine Aktin und Myosin.

Um den Knäuelprozess in Gang zu setzen, müssen die Titinmoleküle zunächst um eine winzige Kraft von weniger als zehn Piconewton gedehnt werden. Bei einer anschließenden Aktin-Myosin-vermittelten Kontraktion trägt die Knäuelbildung dazu bei, dass sich der Muskel verkürzt, und übernimmt somit einen Teil der mechanischen Arbeit. „Ein großer Muskel schafft es dadurch, ein paar Kilogramm mehr zu stemmen, als ohne diesen Mechanismus möglich wären“, veranschaulicht Wolfgang Linke.

Sein Team interessiert sich schon länger für das Riesenprotein Titin, da Mutationen in ihm eine Reihe von Herz- und Muskelerkrankungen auslösen können. Den genauen Mechanismus dahinter, wollen die Physiologen weiter erforschen.

Originalveröffentlichung

J.A. Rivas-Pardo, E.C. Eckels, I. Popa, P. Kosuri, W.A. Linke, J.M. Fernández (2016): Work done by Titin protein folding assists muscle contraction, Cell Reports, DOI: 10.1016/j.celrep.2016.01.025

Weitere Informationen

Prof. Dr. Wolfgang Linke, Kardiovaskuläre Physiologie, Medizinische Fakultät der Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-29100, E-Mail: wolfgang.linke@rub.de

Dr. Julia Weiler | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.ruhr-uni-bochum.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Chemiker nutzen Lichtenergie zum Aufbau biologisch aktiver Verbindungen
14.11.2019 | Westfälische Wilhelms-Universität Münster

nachricht Bauplan eines bakteriellen Kraftwerks entschlüsselt
14.11.2019 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bauplan eines bakteriellen Kraftwerks entschlüsselt

Wissenschaftler der Universität Würzburg und der Universität Freiburg gelang es die komplexe molekulare Struktur des bakteriellen Enzyms Cytochrom-bd-Oxidase zu entschlüsseln. Da Menschen diesen Typ der Oxidase nicht besitzen, könnte dieses Enzym ein interessantes Ziel für neuartige Antibiotika sein.

Sowohl Menschen als auch viele andere Lebewesen brauchen Sauerstoff zum Überleben. Bei der Umsetzung von Nährstoffen in Energie wird der Sauerstoff zu Wasser...

Im Focus: Neue Möglichkeiten des Additive Manufacturing erschlossen

Fraunhofer IFAM Dresden demonstriert Fertigung von Kupferbau

Am Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM in Dresden ist es gelungen, mittels Selektivem Elektronenstrahlschmelzen...

Im Focus: New opportunities in additive manufacturing presented

Fraunhofer IFAM Dresden demonstrates manufacturing of copper components

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM in Dresden has succeeded in using Selective Electron Beam Melting (SEBM) to...

Im Focus: New Pitt research finds carbon nanotubes show a love/hate relationship with water

Carbon nanotubes (CNTs) are valuable for a wide variety of applications. Made of graphene sheets rolled into tubes 10,000 times smaller than a human hair, CNTs have an exceptional strength-to-mass ratio and excellent thermal and electrical properties. These features make them ideal for a range of applications, including supercapacitors, interconnects, adhesives, particle trapping and structural color.

New research reveals even more potential for CNTs: as a coating, they can both repel and hold water in place, a useful property for applications like printing,...

Im Focus: Magnetisches Tuning auf der Nanoskala

Magnetische Nanostrukturen maßgeschneidert herzustellen und nanomagnetische Materialeigenschaften gezielt zu beeinflussen, daran arbeiten Physiker des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) gemeinsam mit Kollegen des Leibniz-Instituts für Festkörper- und Werkstoffforschung (IFW) Dresden und der Universität Glasgow. Zum Einsatz kommt ein spezielles Mikroskop am Ionenstrahlzentrum des HZDR, dessen hauchdünner Strahl aus schnellen geladenen Atomen (Ionen) periodisch angeordnete und stabile Nanomagnete in einem Probenmaterial erzeugen kann. Es dient aber auch dazu, die magnetischen Eigenschaften von Kohlenstoff-Nanoröhrchen zu optimieren.

„Materialien im Nanometerbereich magnetisch zu tunen birgt ein großes Potenzial für die Herstellung modernster elektronischer Bauteile. Für unsere magnetischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Hitzesommer, Überschwemmungen und Co. – Vor welchen Herausforderungen steht die Pflanzenzüchtung der Zukunft?

14.11.2019 | Veranstaltungen

Mediation – Konflikte konstruktiv lösen

12.11.2019 | Veranstaltungen

Hochleistungsmaterialien mit neuen Eigenschaften im Fokus von Partnern aus Wissenschaft und Wirtschaft

11.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bauplan eines bakteriellen Kraftwerks entschlüsselt

14.11.2019 | Biowissenschaften Chemie

Eisfreie Gletscherbecken als Wasserspeicher

14.11.2019 | Geowissenschaften

Lichtimpulse mit wenigen optischen Zyklen durchbrechen die 300 W-Barriere

14.11.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics