Fließphänomene an festen Oberflächen: Grenzflächengeschwindigkeit als wichtige Größe nachgewiesen

Polystyrol-Tropfen nehmen auf zwei unterschiedlichen Substraten langsam denselben Gleichgewichtskontaktwinkel ein, jedoch über unterschiedliche Geschwindigkeits- und Bewegungsprofile der Moleküle. Grafik: Thomas Braun, Heidelberg

Die Studie wurde in der Fachzeitschrift PNAS (Proceedings of the National Academy of Sciences of the United States of America) veröffentlicht.

Strömen Flüssigkeiten über feste Oberflächen, so ist ihre Fließgeschwindigkeit unmittelbar an der Grenzfläche gleich null. „Durch eine spezielle Beschichtung der Oberfläche lässt sich die Grenzflächengeschwindigkeit der Flüssigkeit erhöhen. Damit verkleinern sich gleichzeitig die Scherkräfte innerhalb der Flüssigkeit, und ihre mittlere Fließgeschwindigkeit wird größer – maximal so viel, dass sich die Flüssigkeit nahezu wie ein Festkörper verhält, ohne jedoch ihre Viskosität zu ändern“, sagt Karin Jacobs, Professorin für Experimentalphysik an der Saar-Uni.

Wie sich unterschiedliche Oberflächen genau auf die Grenzflächengeschwindigkeiten und das Gleitverhalten von Flüssigkeitsfilmen auswirken, hat ihre Arbeitsgruppe anhand von Experimenten mit Polystyrol-Tropfen untersucht. „Polystyrol ist ein wichtiger Kunststoff, aus dem beispielsweise CD-Hüllen hergestellt werden“, erläutert Dr. Joshua D. McGraw. Der ehemalige Postdoc-Mitarbeiter in Jacobs‘ Forschungsgruppe hat die Studie geleitet und dabei mit Wissenschaftlern um Physikprofessor Ralf Seemann und Kollegen am ESPCI ParisTech in Paris zusammengearbeitet.

McGraw brachte einzelne Polystyrol-Tropfen auf dünne Unterlagen aus Glimmer auf, wo sie eine recht flache Form einnahmen. In diesem Zustand wurden sie eingefroren und auf zwei neue, „weniger polystyrolfreundliche“ Substrate aufgebracht, die sich an der Oberfläche nicht in ihrer chemischen Zusammensetzung, sondern nur in der Anordnung ihrer Atome voneinander unterschieden. Auf beiden zogen sich die Tropfen zu einer nahezu halbkugeligen Form zusammen.

„Tropfen haben immer die Tendenz, eine Gleichgewichtsform anzunehmen, bei der sie einen bestimmten Kontaktwinkel zur Oberfläche bilden. Dieser Gleichgewichtszustand wird von den Grenzflächenbedingungen bestimmt“, erklärt Karin Jacobs.

Auf beiden Substraten nahmen die Polystyrol-Tropfen den gleichen Gleichgewichtskontaktwinkel ein, allerdings zeigten Tropfenprofil-Messungen mit dem Rasterkraftmikroskop deutliche Unterschiede in der Art und Weise, wie sich die Tropfen beim Übergang vom kleineren zum größeren Kontaktwinkel in ihre neue Form zusammenziehen.

„Dies konnte nur bedeuten, dass sich die Moleküle in den Tropfen auf den zwei verschiedenen Unterlagen auf unterschiedlichen Wegen bewegen, dass also das Geschwindigkeitsprofil in beiden Tropfen unterschiedlich sein musste“, erläutern Dr. Martin Brinkmann und Dr. Tak Shing Chan aus der Gruppe von Professor Ralf Seemann. „Experimentell ist dies in der benötigten Auflösung allerdings nicht zugänglich. Daher waren wir auf Unterstützung durch unsere theoretisch arbeitenden Kollegen in Paris angewiesen.“

Die Saarbrücker Wissenschaftler vermuteten nämlich, dass die Geschwindigkeit der Flüssigkeit an der festen Oberfläche ein entscheidender Faktor für das Fließverhalten von Flüssigkeiten ist. Diese in ein Modell einzupflegen, gelang den Forscherkollegen am ESPCI in Paris. Aus der theoretischen Beschreibung konnten Martin Brinkmann und Tak Shing Chan anschließend Simulationen erstellen, die das Geschwindigkeitsfeld der Moleküle innerhalb eines Tropfens offenbaren.

„Damit konnten wir zeigen, dass bereits atomar kleine Modifikationen einer festen Oberfläche zu unterschiedlichen Geschwindigkeiten der Moleküle in einem flüssigen System führen können, welches die Dicke der Oberflächenbeschichtung um viele Größenordnungen übertrifft“, fasst Jacobs die Ergebnisse der Experimente zusammen.

Die Forschungsergebnisse können dazu beitragen, industrielle Prozesse zu optimieren, beispielsweise „beim Strangpressen von Polymeren“, sagt Karin Jacobs. Dabei werden Kunststoffe durch Düsen gepresst, ähnlich wie Spätzleteig durch eine Presse; bei beiden Vorgängen wirken hohe Scherkräfte. „Nachdem der Teig die Presse passiert hat, weitet sich der Strang aufgrund der nun geringeren Fließgeschwindigkeit auf“, so Jacobs. „Diese Strangaufweitung ist in der Industrie meist unerwünscht und könnte mit einer geeigneten Düsenbeschichtung unterdrückt werden.“

Link zur Veröffentlichung:
http://www.pnas.org/content/early/2016/01/15/1513565113.abstract
doi: 10.1073/pnas.1513565113

Kontakt:
Prof. Dr. Karin Jacobs
Universität des Saarlandes
Experimentalphysik
Tel.: 0681 302-717 88
E-Mail: k.jacobs@physik.uni-saarland.de
http://www.uni-saarland.de/jacobs

Media Contact

Gerhild Sieber Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Autonomes High-Speed-Transportfahrzeug für die Logistik von morgen

Schwarm-Logistik Das Fraunhofer-Institut für Materialfluss und Logistik IML entwickelt eine neue Generation fahrerloser Transportfahrzeuge: Der LoadRunner kann sich dank Künstlicher Intelligenz und Kommunikation über 5G im Schwarm organisieren und selbstständig…

Neue Möglichkeiten in der druckunterstützten Wärmebehandlung

Das Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM in Dresden verstärkt seine technologische Kompetenz im Bereich der druckunterstützten Wärmebehandlung mit der Neuanschaffung einer Quintus Hot Isostatic Press QIH 15L. Damit…

Virenfreie Luft durch neuartigen Raumlüfter

In geschlossenen Räumen ist die Corona-Gefahr besonders groß. Aerosole spielen eine entscheidende Rolle bei der Übertragung von Sars-CoV-2 und erhöhen die Konzentration der Corona-Viren in Büros und Co. Ein neuartiges…

Partner & Förderer