Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Relative Wahrnehmung der Welt

04.12.2015

Optische Täuschungen zeigen, dass unsere Wahrnehmung der Welt oft relativ ist: Ein Objekt wirkt heller, wenn der Hintergrund dunkel ist, und dunkler, wenn der Hintergrund hell ist. Solche Täuschungen zeigen, dass wir das, was wir sehen, mit einem Bezugspunkt vergleichen. Was beim Erkennen solch relativer Kontrastsignale jedoch auf zellulärer Ebene im Gehirn passiert, ist weitgehend unbekannt.

Wissenschaftler am Max-Planck-Institut für Neurobiologie in Martinsried bei München haben nun durch Verhaltensexperimente an der Fruchtfliege Drosophila gezeigt, dass räumliche Kontrastinformationen und Bewegungsreize in unterschiedlichen Nervenzellschaltkreisen verarbeitet werden.


Mit Hilfe ausgeklügelter Verhaltensapparaturen entschlüsseln Neurobiologen die Wahrnehmung der Fruchtfliege und die zugrunde liegenden Nervenschaltkreise.

(c) MPI für Neurobiologie / Schorner


Der Balken dieser Kontrastillusion ist einheitlich grau, auch wenn es anders scheint. Ändert der Balken nun seine Helligkeit, sehen nicht nur Menschen sondern auch Fliegen eine Bewegungsillusion

(c) MPI für Neurobiologie / Schorner

Optische Täuschungen gaukeln dem Betrachter etwas vor, das eigentlich nicht da ist. Dies ist jedoch kein Fehler unseres Sehvermögens. Die speziellen Bedingungen der Täuschung zeigen vielmehr, wie das Gehirn unsere Umgebung analysiert. Viele Effekte beruhen dabei auf relativer Wahrnehmung: Ein Objekt wirkt kleiner, wenn es in der Nähe von großen Objekten platziert wird, oder größer, wenn es von kleineren Objekten umgeben ist.

Andere Illusionen basieren auf räumlichem Kontrast. Ein einheitlich grauer Balken vor einem Hintergrund mit Helligkeitsverlauf erscheint, als wäre die eine Seite des Balkens dunkler als die andere. Bewegungsillusionen täuschen dagegen Bewegung vor, wo keine ist. Wird der beschriebene graue Balken vor dem Hintergrundsverlauf beispielsweise dynamisch heller und dunkler, entsteht der Eindruck einer Bewegung. Diese Täuschung ist als Kontrast-Bewegungs-Illusion bekannt.

Um zu verstehen, wie das Gehirn die optischen Informationen verarbeitet, untersuchen Alexander Borst und seine Abteilung am Max-Planck-Institut für Neurobiologie einen Meister des Bewegungssehens, die Fliege. Basierend auf den bisherigen Erkenntnissen zum Bewegungssehen der Fliege sollten die Tiere auf Bewegungsillusionen wie die Kontrast-Bewegungs-Illusion nicht reagieren.

„Das wollten wir natürlich genauer wissen“, sagt Armin Bahl, der Erstautor der im Fachmagazin Neuron erschienenen Studie. Für ihre Untersuchungen benutzten die Wissenschaftler eine ausgeklügelte Verhaltensapparatur: Befestigt an einem kleinen Haken läuft die Fliege, umgeben von einem künstlichen Panoramabild, auf einem schwebenden Styroporball.

Die Bewegung des Balls zeigt die Laufrichtung der Fliege an. Dies lässt wiederum Rückschlüsse auf die Wahrnehmung der Tiere zu. Als die Wissenschaftler in diesem Versuchsaufbau die Kontrast-Bewegungs-Illusion testeten, waren sie überrascht: Fliegen reagierten sehr stark auf die Illusionen und nahmen eine vermeintliche Bewegung in die gleiche Richtung wahr, wie auch die menschlichen Betrachter.

Aufgabenteilung im Fliegenhirn

Um die neuen Erkenntnisse weiter zu untersuchen, schalteten die Forscher mit Hilfe eines genetischen Tricks die Zellen im Fliegenhirn aus, die für das Bewegungssehen zuständig sind. Solche Fliegen sind vollständig bewegungsblind, wie ein Verhaltensexperiment belegt: Wird eine Fliege von einem rotierenden Streifen-Zylinder umgeben, so drehen sich normale Fliegen mit der Bewegung mit – nach rechts, wenn sich der Zylinder nach rechts dreht, und nach links, wenn die Drehung nach links läuft.

Dieses angeborene Verhalten von Fliegen und vielen anderen Tieren wird optomotorische Reaktion genannt. Sie hilft den Tieren, und auch uns Menschen, den Kurs zu stabilisieren und geradeaus zu fliegen oder zu laufen. Bewegungsblinde Fliegen zeigen dagegen keine optomotorische Reaktion.

Als die Wissenschaftler den bewegungsblinden Fliegen die Kontrast-Bewegungs-Illusion zeigten, fanden sie jedoch keinen Unterschied zum Verhalten von normalen Fliegen. „Das war ein wirklich überraschendes Ergebnis“, erinnert sich Armin Bahl. Die Wissenschaftler schlussfolgerten daraus, dass räumlicher Kontrast und Bewegungen in unterschiedlichen Gehirnregionen berechnet und verarbeitet werden.

„Alles deutet darauf hin, dass das Fliegenhirn Gesehenes über verschiedene Nervenzellkanäle analysiert: Ein Kanal für Bewegungen, ein anderer Kanal für räumlichen Kontrast, und sicherlich weitere Kanäle für andere Merkmale der visuellen Umgebung“, fasst Armin Bahl zusammen. Auf die Frage, ob das auch beim Menschen so ist antwortet Alexander Borst „Sehr wahrscheinlich! Auch das visuelle System des Menschen ist hochgradig modular aufgebaut.“ Die vorliegende Arbeit über das Kontrast-Sehen der Fliege hilft somit zu verstehen, wie das Gehirn die verschiedenen Reize der Umwelt wahrnimmt und verarbeitet.

ORIGINALVERÖFFENTLICHUNG:
Armin Bahl, Etienne Serbe, Matthias Meier, Georg Ammer und Alexander Borst
Neural mechanisms for Drosophila contrast vision
Neuron, online am 3. November 2015

KONTAKT:
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 - 3514
E-mail: merker@neuro.mpg.de

Prof. Dr. Alexander Borst
Abteilung Schaltkreise – Information – Modelle
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 - 3251
Email: borst@neuro.mpg.de

Weitere Informationen:

http://www.neuro.mpg.de - Webseite des MPI für Neurobiologie
http://www.neuro.mpg.de/borst/de - Webseite der Abteilung von Prof. Alexander Borst

Dr. Stefanie Merker | Max-Planck-Institut für Neurobiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht IMMUNOQUANT: Bessere Krebstherapien als Ziel
19.10.2018 | Julius-Maximilians-Universität Würzburg

nachricht Auf dem Weg zu maßgeschneiderten Naturstoffen
19.10.2018 | Goethe-Universität Frankfurt am Main

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ultraleichte und belastbare HighEnd-Kunststoffe ermöglichen den energieeffizienten Verkehr

19.10.2018 | Materialwissenschaften

IMMUNOQUANT: Bessere Krebstherapien als Ziel

19.10.2018 | Biowissenschaften Chemie

Raum für Bildung: Physik völlig schwerelos

19.10.2018 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics