Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Proteine in Darmbakterien erkennen die Zellenform

06.09.2012
Protein-Wellen erzeugen geometrische Figuren in künstlicher Membranumgebung und sorgen für Ordnung
Wissenschaftler aus Dresden, Boston und Saarbrücken haben in einer gemeinsamen Studie herausgefunden, wie spezielle Proteine des Darmbakteriums Escherichia Coli die Form der Zelle erkennen können. Diese Arbeit kann helfen, den Zellteilungsmechanismus in Escherichia Coli besser zu verstehen.

In Escherichia coli wird die Zellteilung wesentlich von den sogenannten FtsZ-Proteinen durchgeführt. Bevor es zur Teilung kommt, sammeln sich diese in der Zellmitte und bilden den Z-Ring, der die Mutterzelle in zwei Hälften teilt und die beiden zukünftigen Tochterzellen abschnürt. Aber woher wissen diese speziellen Strukturproteine, dass sie sich während Zellteilung in der Mitte ansiedeln sollen?

In dem Escherichia coli oszillieren Min-Proteine zwischen den beiden Enden des stäbchenförmigen Bakteriums. Auf künstlichen Membranen in Goldmikrostrukturen folgen sie der Ausrichtung.

© Jakob Schweizer, Biotechnologisches Zentrum der TUD

Ihre Lokalisierung wird durch eine weitere Familie von Proteinen reguliert, durch die sogenannten Min-Proteine. Diese oszillieren zwischen den beiden Enden des stäbchenförmigen Bakteriums hin und her und konzentrieren sich dabei an den beiden Polkappen der Zelle, wohingegen die Zellmitte weitestgehend frei bleibt. Da die Min-Proteine FtsZ-Proteine blockieren, kann sich der Z-Ring nur in der Mitte der Mutterzelle ausbilden.

Um das räumliche und zeitliche Verhalten der Min-Proteine genauer zu studieren, haben Wissenschaftler des Biotechnologischen Zentrum der Technischen Universität Dresden (BIOTEC) der Arbeitsgruppe von Professorin Petra Schwille eine künstliche Membranumgebung geschaffen, mit der die Proteine wechselwirken können. Unter Zugabe von Energie in Form von Adenosintriphosphat (ATP), dem Energieträger aller biologischen Zellen, bildeten die Min-Proteine ebene Wellen aus, die sich über den künstlichen Membranteppich ausbreiten. In einer Kooperation mit dem Institut für Integrative Nanowissenschaften des Leibniz-Instituts für Festkörper- und Werkstoffforschung Dresden wurde das Ausbreitungsverhalten der Min-Protein-Wellen eingehender studiert, indem die künstlichen Membranen durch Gold-Mikrostrukturen in spezifische geometrische Formen gebracht wurden.

„Bei unseren Messungen mit Min-Proteinen auf geometrisch geformten Membranen konnten wir beobachten, dass sich die ausbreitenden Wellen an der vorgegebenen Struktur ausrichten und offenbar somit die Geometrie quasi spüren können“, erläutert Jakob Schweizer, der mit diesem Thema im Fachbereich Physik an der TU Dresden promoviert. “So haben wir zum Beispiel beobachtet, dass in rechteckigen Membranstrukturen die Wellen immer entlang der Diagonalen verlaufen, und in gekrümmten Formen können wir die Wellen sogar um die Ecke lenken.“ Die Arbeit, die diese Woche im Journal Proceedings of the National Academy of Sciences USA veröffentlicht wurde, ist die erfolgreiche Fortführung des Projekts von Dr. Martin Loose, Dr. Walter Seipp-Preisträger der TU Dresden 2011, der gegenwärtig an der Harvard Medical School forscht.

Bei den Min-Protein-Wellen handelt es sich wie bei vielen chemischen Wellen um ein Reaktions-Diffusions-System. Deren theoretische Erforschung hat in Dresden lange Tradition. Co-Autor Prof. Karsten Kruse von der Universität Saarbrücken hat sich bereits am Max-Planck-Institut für Physik Komplexer Systeme mit solchen Phänomenen beschäftigt. Die von seiner Arbeitsgruppe durchgeführten numerischen Simulationen der Min-Protein-Wellen in den geometrischen Membranstrukturen konnten nicht nur die experimentellen Arbeiten der Dresdner Wissenschaftler korrekt vorhersagen, sondern damit auch theoretische Modelle aus der früheren Studie bestätigen.

Weil die Messungen nicht in der biologischen Zelle, sondern in einer künstlichen Membranumgebung durchgeführt wurden, ist diese Arbeit dem Bereich Synthetische Biologie zuzuordnen, der in den letzten Jahren immer mehr Bedeutung für die biologische Grundlagenforschung erlangt hat. „Diese Studie zeigt, dass die Ansätze der synthetischen Biologie viel versprechend sind“, sagt Professorin Petra Schwille. “Es ist in der Tat möglich, zelluläre Prozesse im Reagenzglas nachzubilden und dabei auch noch grundlegende Phänomene zu entdecken, die uns bei der Beobachtung sehr viel komplexerer biologischer Zellen verschlossen bleiben.“ Petra Schwille, bisher Professorin am BIOTEC, ist seit Mai Direktorin am Max-Planck-Institut für Biochemie in Martinsried. Mit ihren Mitarbeitern setzt sie dort die Erforschung der Min-Proteine und der synthetischen Biologie fort.
Die Studie ist zu finden: www.pnas.org/cgi/doi/10.1073/pnas.1206953109

Pressekontakt
Birte Urban-Eicheler, Pressesprecherin Biotechnologisches Zentrum der TU Dresden (BIOTEC), Tel. 0351 458-82065, E-Mail: birte.urban@crt-dresden.de

Prof. Petra Schwille, Department of Cellular and Molecular Biophysics
Max-Planck-Institut für Biochemie, D-82152 Martinsried
Tel.: 089/8578 2901, E-Mail: schwille@biochem.mpg.de

Prof. Karsten Kruse, Theoretische Physik, Universität des Saarlandes
Tel.: 0681 / 302-2763, E-Mail: k.kruse@physik.uni-saarland.de
139Proteine

Das BIOTEChnologische Zentrum (BIOTEC) wurde 2000 als zentrale wissenschaftliche Einrichtung der Technischen Universität Dresden mit dem Ziel gegründet, modernste Forschungsansätze in der Molekular- und Zellbiologie mit den in Dresden traditionell starken Ingenieurswissenschaften zu verbinden. Innerhalb der TU Dresden nimmt das BIOTEC eine zentrale Position in Forschung und Lehre mit dem Schwerpunkt „Molecular Bioengineering und Regenerative Medizin“ ein. Es trägt damit entscheidend zur Profilierung der TU Dresden im Bereich moderner Biotechnologie und Biomedizin bei. Die Forschungsschwerpunkte der internationalen Arbeitsgruppen bilden die Genomik, die Proteomik, die Biophysik, zelluläre Maschinen, die Molekulargenetik, die Gewebezüchtung und die Bioinformatik.

Kim-Astrid Magister | idw
Weitere Informationen:
http://www.tu-dresden.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Biologisch abbaubares Plastik
23.10.2018 | Technische Hochschule Nürnberg Georg Simon Ohm

nachricht Laser lenkt Zellwachstum in geordnete Bahnen
23.10.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: memory-steel – ein neues Material zur Verstärkung von Bauwerken

Ein neues, an der Empa entwickeltes Baumaterial steht kurz vor der Markteinführung: Mit «memory-steel» lassen sich nicht nur neue, sondern auch bestehende Betonstrukturen verstärken. Erhitzt man das Material (einmalig), spannt es sich wie von selber vor. Das Empa-Spin-off re-fer AG präsentiert das Material mit Formgedächtnis nun in einer Vortragsreihe.

Bislang wurden die Stahl-Armierungen in Betonbauwerken meist hydraulisch vorgespannt. Dazu sind Hüllrohre für die Führung der Spannkabel, Anker zur...

Im Focus: memory-steel - a new material for the strengthening of buildings

A new building material developed at Empa is about to be launched on the market: "memory-steel" can not only be used to reinforce new, but also existing concrete structures. When the material is heated (one-time), prestressing occurs automatically. The Empa spin-off re-fer AG is now presenting the material with shape memory in a series of lectures.

So far, the steel reinforcements in concrete structures are mostly prestressed hydraulically. This re-quires ducts for guiding the tension cables, anchors for...

Im Focus: Mit Gravitationswellen die Dunkle Materie ausleuchten

Schwarze Löcher stossen zusammen, Gravitationswellen breiten sich durch die Raumzeit aus - und ein riesiges Messgerät ermöglicht es, die Struktur des Universums zu erkunden. Dies könnte bald Realität werden, wenn die Raumantenne LISA ihren Betrieb aufnimmt. UZH-Forschende zeigen nun, dass LISA auch Aufschluss über die schwer fassbaren Partikel der Dunklen Materie geben könnte.

Dank der Laserinterferometer-Raumantenne (LISA) können Astrophysiker Gravitationswellen beobachten, die von Schwarzen Löchern ausgesendet werden. Diese...

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Lehren und Lernen mit digitalen Medien im Fokus

22.10.2018 | Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Fraunhofer FIT auf der MEDICA & COMPAMED: Von Elektrobenetzung bis Telemedizin

23.10.2018 | Messenachrichten

memory-steel – ein neues Material zur Verstärkung von Bauwerken

23.10.2018 | Architektur Bauwesen

Quantenkommunikation auf Glasfaserbasis - Interferenz mit Lichtquanten unabhängiger Quellen

23.10.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics