Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Proteine bei der Arbeit beobachtet

06.06.2012
Proteine steuern viele Prozesse im Körper, dabei verändern sie ihre Struktur. Die aktivierte Struktur ist experimentell jedoch schwer zugänglich.
Über Genomanalyse, Computersimulationen und Laborexperimente hat ein internationales Forscherteam erstmals ein Modell der aktivierten Sensor-Histidinkinase, eines Proteins zur Signalübertragung, erarbeitet. Dr. Alexander Schug vom Karlsruher Institut für Technologie (KIT) bildete die Aktivierung in umfangreichen Computersimulationen nach. In der Zeitschrift PNAS stellen die Forscher ihre Ergebnisse vor, die Methode lässt sich auch auf andere Proteine übertragen.

Proteine bilden die molekulare Maschinerie des Körpers und erfüllen die verschiedensten Aufgaben: Als Strukturproteine sind sie maßgeblich am Aufbau von Gewebe beteiligt. Als Funktionsproteine sind sie unter anderem für die Steuerung des Stoffwechsels, den Stofftransport, die Blutgerinnung und die Immunabwehr verantwortlich. Während Proteine ihre Funktion erfüllen, verändern sie häufig ihre Struktur. Diese aktivierte Struktur ist oft nur kurzlebig und daher experimentell schwer zugänglich. Um die Funktion eines Proteins zu verstehen und eventuell gezielt zu beeinflussen, etwa bei der Behandlung von Krankheiten mit Medikamenten, ist es jedoch erforderlich, die Strukturveränderungen genau zu kennen.

Aktivierte Anordung des Sensor-Histidinkinase-Proteins: In Blau ist das Protein dargestellt, in Gelb kritische Kontakte, in Rot Adenosintriphosphat, das in dieser Anordnung direkt mit einer bestimmten Aminosäure (dargestellt in Pink) wechselwirken kann. Abbildung: Dr. Alexander Schug

In einem Projekt, das Genomanalyse, Computersimulation und Experimente zur Erbgutveränderung verbindet, haben Forscher aus den USA, Frankreich und Deutschland ein Strukturmodell einer schwer fassbaren aktivierten Anordnung eines wichtigen Proteins erarbeitet. Die Computersimulation und Strukturnachbildung übernahm Dr. Alexander Schug, Leiter der Helmholtz Junior Research Group „Multiscale Biomolecular Simulation“ am Steinbuch Centre for Computing (SCC) des KIT. In der Zeitschrift PNAS stelllen die Forscher nun ihre Ergebnisse vor.

Die Wissenschaftler konzentrierten sich auf Zwei-Komponenten-Signalübertragungssysteme, die besonders in Bakterien sehr häufig sind. Solche Systeme bestehen aus einem Sensor-Histidinkinase-Protein als Empfänger für Signale von außen, das die Informationsübertragung durch eine sogenannte Autophosphorylierung einleitet, und einem Antwortregulator-Protein. Über diese Systeme lagen bisher nur teilweise Strukturinformationen vor.

Durch eine statistische Analyse einer großen Menge von Genomdaten identifierten die Forscher Teile des Sensor-Histidinkinase-Proteins, die während der Stukturveränderungen miteinander in Kontakt treten oder den Kontakt zueinander abbrechen. Basierend auf dieser Analyse, gelang es dem KIT-Forscher Dr. Alexander Schug, in umfangreichen Computersimulationen die Strukturveränderungen während der Autophosphorylierung nachzubilden und ein Modell der aktivierten Struktur zu erstellen. Dieses Modell ließ sich anschließend in Laborexperimenten verifizieren.

Zwei-Komponenten-Systeme stellen bei allen Bakterien das primäre Signal-Reaktions-System dar. Daher tragen die Ergebnisse der Forscher zum Verständnis der bakteriellen Signalübertragung bei. Die Erkenntnisse könnten künftig die Entwicklung neuer Antibiotika voranbringen. Überdies ist der Ansatz auch für andere Proteinsysteme relevant: „Da die reine Menge an Genomdaten in den vergangenen zehn Jahren geradezu explodiert ist und weiter rasant wächst, lässt sich unsere Methode auf immer mehr Proteine übertragen, auch über die Signalübertragung hinaus“, erklärt Schug.

Angel E. Dago, Alexander Schug, Andrea Procaccini, James A. Hoch, Martin Weigt, and Hendrik Szurmant: The Structural Basis of Histidine Kinase Autophosphorylation. Integrating Genomics, Molecular Dynamics and Mutagenesis. In: PNAS – Proceedings of the National Academy of Sciences of the United States of America. June 5, 2012 (DOI:10.1073/pnas.1201301109).

Die Online-Version des Artikels ist abrufbar unter: www.pnas.org/cgi/doi/10.1073/pnas.1201301109.

Das Karlsruher Institut für Technologie (KIT) ist eine Körperschaft des öffentlichen Rechts nach den Gesetzen des Landes Baden-Württemberg. Es nimmt sowohl die Mission einer Universität als auch die Mission eines nationalen Forschungszentrums in der Helmholtz-Gemeinschaft wahr. Das KIT verfolgt seine Aufgaben im Wissensdreieck Forschung – Lehre – Innovation.
Weiterer Kontakt:

Margarete Lehné
Presse, Kommunikation und
Marketing
Tel.: +49 721 608-48121
Fax: +49 721 608-43658
E-Mail: margarete.lehne@kit.edu

Monika Landgraf | KIT
Weitere Informationen:
http://www.kit.edu

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Molekulare Schere stabilisiert das Zell-Zytoskelett
24.06.2019 | Paul Scherrer Institut (PSI)

nachricht Mitten ins Herz
24.06.2019 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Partielle Mondfinsternis am 16./17. Juli 2019

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde (VdS) und des Hauses der Astronomie in Heidelberg - Wie im letzten Jahr findet auch 2019 eine in den späten Abendstunden in einer lauen Sommernacht gut zu beobachtende Mondfinsternis statt, und zwar in der Nacht vom 16. auf den 17. Juli. Die Finsternis ist zwar nur partiell - der Mond tritt also nicht vollständig in den Erdschatten ein - es ist aber für die nächsten Jahre die einzige gut sichtbare Mondfinsternis im deutschen Sprachraum.

Am Dienstagabend, den 16. Juli, wird ein kosmisches Schauspiel zu sehen sein: Der Vollmond taucht zu einem großen Teil in den Schatten der Erde ein, es findet...

Im Focus: Fraunhofer IDMT zeigt akustische Qualitätskontrolle auf der Fachmesse für Messtechnik »Sensor + Test 2019«

Das Ilmenauer Fraunhofer-Institut für Digitale Medientechnologie IDMT präsentiert vom 25. bis 27. Juni 2019 am Gemeinschaftsstand der Fraunhofer-Gesellschaft (Stand 5-248) seine neue Lösung zur berührungslosen, akustischen Qualitätskontrolle von Werkstücken und Bauteilen. Da die Prüfung zerstörungsfrei funktioniert, kann teurer Prüfschrott vermieden werden. Das Prüfverfahren wird derzeit gemeinsam mit verschiedenen Industriepartnern im praktischen Einsatz erfolgreich getestet und hat das Technology Readiness Level (TRL) 6 erreicht.

Maschinenausfälle, Fertigungsfehler und teuren Prüfschrott reduzieren

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Erfolgreiche Praxiserprobung: Bidirektionale Sensorik optimiert das Laserauftragschweißen

Die Qualität generativ gefertigter Bauteile steht und fällt nicht nur mit dem Fertigungsverfahren, sondern auch mit der Inline-Prozessregelung. Die Prozessregelung sorgt für einen sicheren Beschichtungsprozess, denn Abweichungen von der Soll-Geometrie werden sofort erkannt. Wie gut das mit einer bidirektionalen Sensorik bereits beim Laserauftragschweißen im Zusammenspiel mit einer kommerziellen Optik gelingt, demonstriert das Fraunhofer-Institut für Lasertechnik ILT auf der LASER World of PHOTONICS 2019 auf dem Messestand A2.431.

Das Fraunhofer ILT entwickelt optische Sensorik seit rund 10 Jahren gezielt für die Fertigungsmesstechnik. Dabei hat sich insbesondere die Sensorik mit der...

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Meeresleuchten, Klimawandel, Küstenmeere Afrikas – Spannende Vielfalt bei „Warnemünder Abenden 2019“

24.06.2019 | Veranstaltungen

Plastik: Mehr Kreislauf gegen die Krise gefordert

21.06.2019 | Veranstaltungen

Rittal und Innovo Cloud sind auf Supercomputing-Konferenz in Frankfurt vertreten

18.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Molekulare Schere stabilisiert das Zell-Zytoskelett

24.06.2019 | Biowissenschaften Chemie

Neues „Intelligent Edge Data Center“ bringt Smart Industries auf nächstes Level

24.06.2019 | Unternehmensmeldung

Meeresleuchten, Klimawandel, Küstenmeere Afrikas – Spannende Vielfalt bei „Warnemünder Abenden 2019“

24.06.2019 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics