Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Physik lebender Systeme - Wie Proteine die Zellachse finden

27.01.2020

In Embryonen des Fadenwurms C. elegans finden Proteinmuster die lange Achse, sodass die erste Zellteilung korrekt erfolgen kann. LMU-Wissenschaftler haben nun mithilfe von Simulationen die Mechanismen dieses Prozesses identifiziert.

Die richtige Verteilung von Proteinen in der Zelle ist für viele biologische Prozesse essenziell. Die Zellteilung und das Wachstum etwa werden durch Proteinmuster gesteuert, die die Orientierung der Zellteilung und den Teilungsort festlegen.


Ein wichtiges Beispiel dafür ist die erste Zellteilung bei dem Fadenwurm Caenorhabditis elegans, einem gängigen Modellorganismus vor allem in der Entwicklungsbiologie. Diese erste Teilung wird durch sogenannte PAR-Proteine reguliert. Solche lebenswichtigen Prozesse müssen sehr stabil ablaufen.

Der LMU-Biophysiker Erwin Frey hat nun mit seinem Team zwei entscheidende Mechanismen identifiziert, die die robuste Ausrichtung des PAR-Protein Musters entlang der langen zellulären Achse möglich machen. Über ihre Ergebnisse berichten die Wissenschaftler im Fachmagazin Nature Communications.

Der längliche C. elegans Embryo wird bei seiner ersten Teilung in eine Kopf- und eine hintere Zelle geteilt. Die PAR-Proteine legen fest, wo im Embryo vorne und wo hinten ist, indem sie ein Muster auf der Zellmembran bilden:

Eine Gruppe der PAR-Proteine, die sogenannten anterior PARs (aPARs) siedeln sich an einem Zellpol an, und legen dadurch die Vorderseite fest. Die sogenannten posterior PARs (pPARs) binden an den gegenüberliegenden Zellpol und legen damit die Hinterseite fest. Kurz nach der Befruchtung sind allerdings alle PAR-Proteine noch gleichmäßig in der Zelle verteilt, denn sie können frei durch die Zelle diffundieren und prinzipiell überall an die Zellmembran binden.

„Wir haben nun mit mathematischen Modellen und numerischen Simulationen untersucht, welche Mechanismen zur Musterbildung führen und welche Mechanismen das Muster in einer bestimmten Achse in zellulärer Geometrie ausrichten“, sagt Raphaela Geßele, Doktorandin in Freys Team und Erstautorin der Arbeit.

Dabei zeigte sich, dass chemische Zyklen zwischen phosphorylierten und dephosphorylierten Zuständen eine entscheidende Rolle spielen: Die beiden PAR-Gruppen können sich gegenseitig von der Membran verdrängen, indem sie die Proteine der jeweils anderen Gruppe phosphorylieren.

Die losgelösten Proteine werden dann im Zellinneren, dem Cytosol, wieder dephosphoryliert und können dann erneut binden. Diese Verzögerung des erneuten Membranbindens nach Loslösen ist entscheidend für die korrekte Ausrichtung des Proteinmusters entlang der langen Zellachse.

An den Polen treffen Proteine aufgrund der Zellgeometrie häufiger auf die Membran auf. Je nachdem, ob die Proteine länger in einem phosphorylierten Zustand bleiben oder nicht, gewinnt dort schnell eine Proteinsorte die Überhand:

„Die Loslösung von der Membran geschieht proportional dazu, wie viele Proteine einer Sorte bereits auf der Membran sind. Sobald eine Proteinsorte auf der Membran am Pol die Oberhand gewonnen hat, bildet sich dort eine stabile Domäne aus, und die andere Proteinsorte hat keine Chance mehr“, sagt Geßele.

Zusätzliche Unterstützung bekommt die Musterbildung entlang der langen Achse des ellipsoiden Embryos dadurch, dass der Übergangsbereich zwischen der aPAR- und der pPAR-Domäne, in dem sich beide Proteingruppen auf der Membran fortwährend gegenseitig stören, von der Zelle aus energetischen Gründen möglichst klein gehalten wird.

Dies ist dann der Fall, wenn die beiden Domänen jeweils einen Zellpol einnehmen und damit der Übergangsbereich zwischen den Domänen minimiert wird. „Die Polarisation von Zellen spielt in vielen biologischen Systemen eine entscheidende Rolle“, sagt Frey.

„Unsere Ergebnisse ermöglichen neue Einsichten in die Mechanismen, mit denen die Zelle diese grundlegenden Prozesse reguliert.“

Wissenschaftliche Ansprechpartner:

Prof. Dr. Erwin Frey
Statistische und Biologische Physik
Arnold-Sommerfeld Center für Theoretische Physik
Tel.: +49 (0) 89 / 2180-4538
E-Mail: erwin.frey@physik.lmu.de
http://www.theorie.physik.uni-muenchen.de/lsfrey/members/group_leaders/erwin_fre...

Originalpublikation:

Geometric cues stabilise long-axis polarisation of PAR protein patterns in C. elegans
Raphaela Geßele, Jacob Halatek, Laeschkir Würthner, Erwin Frey
Nature Communications 2020

Thomas Pinter | idw - Informationsdienst Wissenschaft
Weitere Informationen:
https://www.uni-muenchen.de/forschung/news/2020/frey_gessele.html

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Elektronenbeugung zeigt winzige Kristalle in neuem Licht
24.02.2020 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Nanopartikel gezielt zum Tumor lenken: HZDR-Forscher spüren Krebszellen mit maßgeschneiderten Materialien auf
24.02.2020 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Loopings der Bakterien: Forschungsteam mit Beteiligung der Universität Göttingen analysiert Fortbewegung

Das magnetotaktische Bakterium Magnetococcus marinus schwimmt mit Hilfe von zwei Bündeln von Geißeln. Außerdem besitzen die Bakterienzellen eine Art intrazelluläre Kompassnadel und können daher mit einem Magnetfeld gesteuert werden. Sie werden deshalb als biologisches Modell für Mikroroboter benutzt. Ein internationales Team der Universität Göttingen, des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam und der CEA Cadarache (Frankreich) hat nun aufgeklärt, wie sich diese Bakterien bewegen und deren Schwimmgeschwindigkeit bestimmt. Die Ergebnisse sind in der Fachzeitschrift eLife erschienen.

Die Forscherinnen und Forscher nutzten eine Kombination von neuen experimentellen Methoden und Computersimulationen: Sie verfolgten die Bewegung der...

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schiffsexpedition bringt Licht ins Innere der Erde

24.02.2020 | Geowissenschaften

Elektronenbeugung zeigt winzige Kristalle in neuem Licht

24.02.2020 | Biowissenschaften Chemie

Antikörper als Therapiealternative bei Tumoren am Hör- und Gleichgewichtsnerv?

24.02.2020 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics