Neuronale Koordination – Aus der Zeit gefallen

Grafik: Sebastian Kaulitzki / fotolia.com

Die Nervenzellen im Hippocampus und im entorhinalen Cortex sind entscheidend für das Gedächtnis und die räumliche Orientierung. Ein zentraler Mechanismus ist die genaue zeitliche und räumliche Abstimmung der Nervenzellen untereinander.

Wie diese neuronale Koordination funktioniert, ist eine der zentralen Fragen der neurowissenschaftlichen Forschung. Eine Studie von Neurobiologen um Professor Christian Leibold von der LMU und Professor Stefan Leutgeb von der UC San Diego zeigt nun, dass der entorhinale Cortex vor allem die zeitliche Struktur der neuronalen Antworten des Hippocampus beeinflusst. Über ihre Ergebnisse berichten die Neurowissenschaftler aktuell in der Fachzeitschrift Nature Neuroscience.

Gemeinsam haben die Forscher aus München und San Diego Daten neu ausgewertet, die von Tieren stammen, die medial entorhinale Verletzungen haben. „Da Hippocampus und medialer entorhinaler Cortex miteinander rückgekoppelt verbunden sind, bieten Tiere mit derartigen Läsionen eine einmalige Gelegenheit, die neuronalen Aktivitäten in den isolierten Hirnarealen einzeln zu untersuchen“, sagt Christian Leibold.

Eine Frage des Timings

Die Daten wurden ursprünglich großteils von der LMU-Doktorandin Magdalene Schlesiger an der Universität San Diego erhoben, um zu erforschen, ob sich auch bei Tieren ohne medialen entorhinalen Cortex räumliche neuronale Aktivität im Hippocampus nachweisen lässt. Dafür wurden die neuronalen Aktionspotenziale und deren Abfolge in den Hirnarealen von Ratten mit Läsionen im medialen entorhinalen Cortex gemessen, wenn diese auf derselben Strecke hin- und herliefen.

Diese Daten wurden nun im Rahmen eines DFG-geförderten Kooperationsprojekts in München und San Diego neu ausgewertet, wobei sich die Forscher dabei auf das Timing der neuronalen Aktivität konzentriert haben. „Die zeitliche Koordination der neuronalen Aktivität ist wichtig für Lernen und Gedächtnis. Sie ist die wichtigste treibende Kraft für synaptische Plastizität“, erläutert Christian Leibold den Ansatz ihres Zugangs.

Die Auswertung der Daten zeigt, dass der mediale entorhinale Cortex hauptsächlich für die zeitliche Abstimmung der neuronalen Aktivität wichtig ist. Das hat entscheidende Auswirkungen für die Leistungsfähigkeit des Gehirns: „Fehlt der mediale entorhinale Cortex, sind trotz intaktem Hippocampus sämtliche Gedächtnisprozesse gestört, die mit episodischem Lernen zu tun haben, wie viele bisherige Experimente und Theorien vermuten lassen“, sagt Leibold.

Kontakt:
Professor Christian Leibold
Computational Neuroscience
Department Biology II der LMU
Tel: 089 / 2180-74802
E-Mail: leibold@bio.lmu.de
http://www.neuro.bio.lmu.de/members/comp_neuro_leibold/leibold_c/index.html

Publikation:
Magdalene Schlesiger u.a.:
The medial entorhinal cortex is necessary for temporal organization of hippocampal neuronal activity
DOI: 10.1038/nn.4056
In: Nature Neuroscience 2015
http://www.nature.com/neuro/journal/vaop/ncurrent/full/nn.4056.html

Media Contact

Luise Dirscherl idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-muenchen.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer