Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Waffe gegen hochresistente Keime

28.05.2010
Ein Wirkstoff aus Pilzen und niederen Tieren eignet sich eventuell als schlagkräftige Waffe gegen gefährliche Bakterien.

Die Rede ist vom so genannten Plectasin, einem kleinen Eiweißmolekül, das selbst hochresistente Keime zerstören kann. Forscher der Universität Bonn haben zusammen mit dänischen und holländischen Kollegen aufgeklärt, wie die Substanz das macht. Ihre Ergebnisse erscheinen am 28. Mai in der Zeitschrift Science. Die Autoren sehen in Plectasin eine viel versprechende Leitsubstanz für neue Antibiotika.

Immer mehr Bakterien sprechen auf gängige Antibiotika nicht mehr an. Das betrifft vor allem die methicillin-resistenten Staphylokokken: Gegen diese so genannten MRSA-Stämme sind die Waffen der Pharmaforschung inzwischen weitgehend stumpf. Nach Schätzungen erkrankt bereits jeder zweite intensivmedizinisch behandelte Patient in den USA an einer MRSA-Infektion.

Plectasin könnte die Kräfteverhältnisse wieder zu Gunsten der Mediziner zurechtrücken. Doch wie genau macht das kleine Eiweißmolekül das? Die Bonner Forscher um Dr. Tanja Schneider und Professor Dr. Hans-Georg Sahl haben diese Frage zusammen mit dänischen und holländischen Kollegen beantwortet. Demnach stört Plectasin die Bildung der Bakterienzellwand, so dass sich die Erreger nicht mehr teilen können.

Diebstahl auf der Bakterien-Baustelle

Plectasin verhält sich dabei wie ein Dieb, der einem Maurer die Steine klaut. „Es heftet sich an den Zellwand-Bestandteil Lipid II und verhindert so, dass dieser eingebaut wird“, erklärt Professor Sahl. „Ohne Zellwand sind Bakterien aber nicht lebensfähig.“ Kein Wunder, dass das wohl bekannteste Antibiotikum Penicillin ebenfalls die Zellwand-Synthese behindert.

Plectasin ähnelt in seiner Wirkungsweise jedoch eher dem ebenfalls weit verbreiteten Vancomycin. Vancomycin galt seit den 80er Jahren im Kampf gegen MRSA-Stämme als Mittel der Wahl. Inzwischen gibt es jedoch mehr und mehr Bakterien, die auch gegen Vancomycin resistent sind. „Gegen Plectasin sind diese Stämme jedoch noch empfindlich“, betont Dr. Tanja Schneider. Dennoch sei auch mit der neuen Substanz das Resistenz-Problem nicht auf Dauer gelöst. „Es ist immer nur eine Frage der Zeit, bis die Erreger mutieren und ihnen auch die neuen Medikamente nichts mehr anhaben können“, sagt sie. „Das ist ein ewiges Wettrüsten.“

Plectasin wurde im Rahmen einer Studie der dänische Firma Novozymes entdeckt. Es gehört zu den so genannten Defensinen. Diese Abwehrmoleküle sind bei Pilzen, Tieren und wohl auch bei Pflanzen weit verbreitet. Der Mensch bildet beispielsweise Defensine auf seiner Haut und erstickt so viele Infektionen bereits im Keim. Defensine töten jedoch nicht nur Krankheitserreger, sondern alarmieren auch das Immunsystem. Daher setzt die Pharmabranche in sie besonders große Hoffnungen.

Kontakt:
Professor Dr. Hans-Georg Sahl
Institut für Mikrobiologie und Biotechnologie der Universität Bonn
Telefon: 0228/73-7941
E-Mail: hgsahl@uni-bonn.de
Dr. Tanja Schneider
Telefon: 0228/73-5688 oder -5266
E-Mail: tanja@microbiology-bonn.de
Rene Tronborg
Communications Consultant
Novozymes AS
Telefon: 0045 4446 2274
E-Mail: retr@novozymes.com

Dr. Andreas Archut | idw
Weitere Informationen:
http://www.uni-bonn.de

Weitere Berichte zu: Antibiotikum Bakterien Eiweißmolekül MRSA-Stämme Plectasin vancomycin

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Tuberkulose: Neue Einblicke in den Erreger
10.10.2019 | Julius-Maximilians-Universität Würzburg

nachricht Nanostrukturen helfen, die Haftung von Krankenhauskeimen zu reduzieren
10.10.2019 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Im Focus: How Do the Strongest Magnets in the Universe Form?

How do some neutron stars become the strongest magnets in the Universe? A German-British team of astrophysicists has found a possible answer to the question of how these so-called magnetars form. Researchers from Heidelberg, Garching, and Oxford used large computer simulations to demonstrate how the merger of two stars creates strong magnetic fields. If such stars explode in supernovae, magnetars could result.

How Do the Strongest Magnets in the Universe Form?

Im Focus: Wenn die Erde flüssig wäre

Eine heisse, geschmolzene Erde wäre etwa 5% grösser als ihr festes Gegenstück. Zu diesem Ergebnis kommt eine Studie unter der Leitung von Forschenden der Universität Bern. Der Unterschied zwischen geschmolzenen und festen Gesteinsplaneten ist wichtig bei die Suche nach erdähnlichen Welten jenseits unseres Sonnensystems und für das Verständnis unserer eigenen Erde.

Gesteinsplaneten so gross wie die Erde sind für kosmische Massstäbe klein. Deshalb ist es ungemein schwierig, sie mit Teleskopen zu entdecken und zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

Zukunft Bau Kongress 2019 „JETZT! Bauen im Wandel“

10.10.2019 | Veranstaltungen

Aktuelle Trends an den Finanzmärkten im Schnelldurchlauf

09.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Fraunhofer IZM setzt das E-Auto auf die Überholspur

11.10.2019 | Energie und Elektrotechnik

IVAM-Produktmarkt auf der COMPAMED 2019: Keine Digitalisierung in der Medizintechnik ohne Mikrotechnologien

11.10.2019 | Messenachrichten

Kryptografie für das Auto der Zukunft

11.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics