Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Netzwerke der Genaktivität steuern die Organentwicklung

27.06.2019

Erstmals haben Wissenschaftler in zwei großen Studien vergleichend die genetischen Programme entschlüsselt, die die Entwicklung wichtiger Organe beim Menschen und bei anderen ausgewählten Säugetieren vor und nach der Geburt steuern. Dabei konnten die Molekularbiologen der Universität Heidelberg unter anderem zeigen, dass alle untersuchten Organe fundamentale und ursprüngliche Genaktivitäts-Netzwerke aufweisen, die bereits in der Frühzeit der Säugetierevolution entstanden sein müssen.

Heidelberger Forscher veröffentlichen evolutionäre Studien zu entwicklungsgenetischen Programmen verschiedener Säugetiere


Die Forschungsgruppe von Prof. Dr. Henrik Kaessmann hat die Aktivität (Expression) von Genen in der Entwicklung von Säugetierorganen untersucht. Die Abbildung (Würfel) veranschaulicht die drei biologischen Dimensionen der Arbeiten: Spezies, Organe, Entwicklungsstadien. Die evolutionäre Verwandtschaft der Spezies ist in einem Stammbaum auf der linken vorderen Oberfläche des Würfels angedeutet, während die Expression eines beispielhaften Gens in der Entwicklung in verschiedenen Organen auf der rechten vorderen Oberfläche anschaulich gemacht wird.

Quelle: Forschungsgruppe Kaessmann

Erstmals haben Wissenschaftler vergleichend die genetischen Programme entschlüsselt, die die Entwicklung wichtiger Organe beim Menschen und bei anderen ausgewählten Säugetieren – Rhesusaffe, Maus, Ratte, Kaninchen und Opossum – vor und nach der Geburt steuern.

Die Molekularbiologen der Universität Heidelberg analysierten dazu mithilfe moderner Sequenzierungstechnologien neben Gehirn und Herz auch Leber, Niere, Hoden und Eierstock. Ihre großangelegte Studie hat unter anderem gezeigt, dass alle untersuchten Organe fundamentale und ursprüngliche Genaktivitäts-Netzwerke aufweisen, die bereits in der Frühzeit der Säugetierevolution vor mehr als 200 Millionen Jahren entstanden sein müssen.

In einer zweiten großen Studie wurden zum ersten Mal die Funktionen einer bisher wenig verstandenen, aber großen Kategorie von Genen in der Entwicklung der Säugetiere beleuchtet, die sogenannten RNA-Gene, deren Aktivität lange Ribonukleinsäuren und nicht – wie „normale“ Gene – Proteine hervorbringt.

Ein fein abgestimmtes und komplexes Zusammenspiel der Aktivität einer großen Zahl von Genen – auch Genexpression genannt – steuert die Entwicklung von einer befruchteten Eizelle zum erwachsenen Lebewesen. Bisher war das Verständnis dieser essentiellen genetischen Programme in Säugetieren auf einzelne Protein-Gene und bestimmte Organe oder Entwicklungsphasen beschränkt. Zudem wurden unter den vielen Arten vorwiegend Mäuse untersucht.

„Weitgehend unbekannt waren somit die genetischen Grundlagen, die die Unterschiede von Organen hinsichtlich Größe, Struktur und Funktion in verschiedenen Säugetieren ausmachen“, so Prof. Dr. Henrik Kaessmann, der am Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH) die Forschungsgruppe „Evolution des Säugetiergenoms“ leitet.

Um die genetischen Entwicklungsprogramme umfassend zu untersuchen, hat das Kaessmann-Team neuartige Hochdurchsatz-Verfahren eingesetzt. Diese sogenannten Next-Generation-Sequenzierungstechnologien (NGS) erlauben es, die Expression aller Gene im jeweiligen Genom gleichzeitig zu analysieren.

Mithilfe dieser NGS wurden mehr als 100 Milliarden Aktivitätsschnipsel sowohl von Protein-Genen als auch RNA-Genen aus den verschiedenen Organen und Säugetieren abgelesen. „Damit konnten wir die im Verlauf der Entwicklung wechselnden Genaktivitäten quantifizieren und vergleichen“, erläutern Dr. Margarida Cardoso-Moreira und Ioannis Sarropoulos, die Erstautoren der zwei Veröffentlichungen, die zu den Studien erschienen sind.

Die bioinformatischen Analysen der Daten wurden mit Hochleistungsrechnern des Universitätsrechenzentrums Heidelberg durchgeführt. Sie haben neue Einsichten in die genetische Steuerung der Organentwicklung bei Säugetieren geliefert.

So arbeiten die fundamentalen und ursprünglichen Genaktivitäts-Netzwerke, die die Forscher entdeckt haben, in allen untersuchten Säugetieren – der Mensch zählt zu den Säugetieren – ähnlich und bestimmen Schlüsselprozesse der Entwicklung.

Das bedeutet, dass diese molekularen Netzwerke schon vor mehr als 200 Millionen Jahren die Organentwicklung früher Säugetierarten kontrolliert haben.

Gleichzeitig fanden die Wissenschaftler eine überraschend große Anzahl von Genen, deren Aktivitätsmuster in den verschiedenen Säugetierarten deutlich voneinander abweichen. Diese Unterschiede, die im Laufe der Evolution entstanden sind, erklären die besonderen Organmerkmale der jeweiligen Arten. Für die Gene, die die Gehirnentwicklung steuern, konnten die Heidelberger Forscher beispielsweise für den Menschen eigene Expressionsmuster identifizieren.

Insgesamt konnten die Forscher auch einer überraschend großen Anzahl von RNA-Genen Funktionen in der Steuerung der Organentwicklung zuweisen. Somit spielt dieser bisher schwer zu charakterisierende Gentypus eine wichtige Rolle in der Entwicklung der Säugetiere, wie Prof. Kaessmann betont.

In ihren großangelegten Studien identifizierten die Forscher des ZMBH ein übergeordnetes Muster im Ablauf der genetischen Programme. Während sie in der frühen, das heißt vorgeburtlichen Phase der Organentwicklung in allen untersuchten Säugetieren noch sehr ähnlich ablaufen, weichen sie im weiteren Verlauf immer stärker voneinander ab. „Die Eigenschaften der Organe, die für eine Art bestimmend sind, entstehen also erst spät im Laufe der Entwicklung“, betont Prof. Kaessmann.

„Wir haben damit erstmals mit modernen molekularen Methoden eine richtungsweisende Hypothese der Biologie aus dem 19. Jahrhundert untermauert.“ Der deutsch-baltische Naturforscher Karl Ernst von Baer (1792 bis 1876) erkannte bei Wirbeltieren, dass die Embryonen verschiedener Arten immer schwerer zu unterscheiden sind, je jünger sie angetroffen werden.

An den Arbeiten waren Wissenschaftler aus China, Großbritannien, Portugal, Russland, Schweden, der Schweiz und den USA beteiligt. Die Studien wurden vom European Research Council und dem Schweizerischen Nationalfonds sowie mit einem Marie-Curie-Stipendium der Europäischen Union gefördert. Die Daten sind in einer frei zugänglichen Datenbank abrufbar. Die Forschungsergebnisse wurden in „Nature“ veröffentlicht.

Bilderläuterung:
Die Forschungsgruppe von Prof. Dr. Henrik Kaessmann hat die Aktivität (Expression) von Genen in der Entwicklung von Säugetierorganen untersucht. Die Abbildung (Würfel) veranschaulicht die drei biologischen Dimensionen der Arbeiten: Spezies, Organe, Entwicklungsstadien. Die evolutionäre Verwandtschaft der Spezies ist in einem Stammbaum auf der linken vorderen Oberfläche des Würfels angedeutet, während die Expression eines beispielhaften Gens in der Entwicklung in verschiedenen Organen auf der rechten vorderen Oberfläche anschaulich gemacht wird.
Quelle: Forschungsgruppe Kaessmann

Kontakt:
Universität Heidelberg
Kommunikation und Marketing
Pressestelle, Telefon (06221) 54-2311
presse@rektorat.uni-heidelberg.de

Wissenschaftliche Ansprechpartner:

Prof. Dr. Henrik Kaessmann
Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH)
Telefon (06221) 54-5854
h.kaessmann@zmbh.uni-heidelberg.de

Originalpublikation:

M. Cardoso-Moreira, J. Halbert, D. Valloton, B. Velten, C. Chen, Y. Shao, A. Liechti, K. Ascenção, C. Rummel, S. Ovchinnikova, P.V. Mazin, I. Xenarios, K. Harshman, M. Mort, D.N. Cooper, C. Sandi, M. J. Soares, P.G. Ferreira, S. Afonso, M. Carneiro, J.M. Turner, J.L. VandeBerg, A. Fallahshahroudi, P. Jensen, R. Behr, S. Lisgo, Susan Lindsay, P. Khaitovich, W. Huber, J. Baker, S. Anders, Y.E. Zhang & Henrik Kaessmann: Gene expression across mammalian organ development. Nature (2019), doi: 10.1038/s41586-019-1338-5

I. Sarropoulos, R. Marin, M. Cardoso-Moreira & H. Kaessmann: Developmental dynamics of lncRNAs across mammalian organs and species. Nature (2019), doi: 10.1038/s41586-019-1341-x

Weitere Informationen:

http://www.zmbh.uni-heidelberg.de/Kaessmann
http://evodevoapp.kaessmannlab.org
http://lncrnas.kaessmannlab.org

Marietta Fuhrmann-Koch | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bayerisch-tschechisches Forschungsprojekt trägt zum Schutz der Bienen bei
15.07.2019 | Universität Regensburg

nachricht Biobasierte Dünger sollen künftig Mineraldünger ersetzen
12.07.2019 | Julius Kühn-Institut, Bundesforschungsinstitut für Kulturpflanzen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Beschleunigerphysik: Alternatives Material für supraleitende Hochfrequenzkavitäten getestet

Supraleitende Hochfrequenzkavitäten können Elektronenpakete in modernen Synchrotronquellen und Freien Elektronenlasern mit extrem hoher Energie ausstatten. Zurzeit bestehen sie aus reinem Niob. Eine internationale Kooperation hat nun untersucht, welche Vorteile eine Beschichtung mit Niob-Zinn im Vergleich zu reinem Niob bietet.

Zurzeit ist Niob das Material der Wahl, um supraleitende Hochfrequenzkavitäten zu bauen. So werden sie für Projekte wie bERLinPro und BESSY-VSR eingesetzt,...

Im Focus: Künstliche Intelligenz löst Rätsel der Physik der Kondensierten Materie: Was ist die perfekte Quantentheorie?

Für einige Phänomene der Quanten-Vielteilchenphysik gibt es mehrere Theorien. Doch welche Theorie beschreibt ein quantenphysikalisches Phänomen am besten? Ein Team von Forschern der Technischen Universität München (TUM) und der amerikanischen Harvard University nutzt nun erfolgreich künstliche neuronale Netzwerke für die Bildanalyse von Quantensystemen.

Hund oder Katze? Die Unterscheidung ist ein Paradebeispiel für maschinelles Lernen: Künstliche neuronale Netzwerke können darauf trainiert werden Bilder zu...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Was die Kraftwerke der Zelle in Form hält

Ein Team aus Deutschland und der Schweiz um Professor Oliver Daumke vom MDC hat untersucht, wie ein Protein der Dynamin-Familie die innere Membran der Mitochondrien verformt. Die Ergebnisse, die auch Einblicke in erbliche Erkrankungen des Sehnervs liefern, sind im Journal „Nature“ veröffentlicht.

Mitochondrien sind die Kraftwerke unserer Zellen. Hier wird Energie in Form chemischer Verbindungen wie ATP gewonnen. Um dieser Aufgabe optimal nachgehen zu...

Im Focus: Knobeln auf dem Quanten-Schachbrett

Physiker der Universität Innsbruck schlagen ein neues Modell vor, mit dem die Überlegenheit von Quantencomputern gegenüber klassischen Supercomputern bei der Lösung von Optimierungsaufgaben gezeigt werden könnte. Sie demonstrieren in einer aktuellen Arbeit, dass schon wenige Quantenteilchen genügen würden, um das mathematisch schwierige Damenproblem im Schach auch für größere Schachbretter zu lösen.

Das Damenproblem ist eine schachmathematische Aufgabe, die schon den großen Mathematiker Carl Friedrich Gauß beschäftigt hat, für die er aber erstaunlicher...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Auswandern auf Terra-2?

15.07.2019 | Veranstaltungen

Hallo Herz! Wie kommuniziert welches Organ mit dem Herzen?

12.07.2019 | Veranstaltungen

Schwarze Löcher und unser Navi im Kopf: Wissenschaftsshow im Telekom Dome in Bonn

11.07.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Auswandern auf Terra-2?

15.07.2019 | Veranstaltungsnachrichten

Beschleunigerphysik: Alternatives Material für supraleitende Hochfrequenzkavitäten getestet

15.07.2019 | Physik Astronomie

Verfahren zum Patent angemeldet: Katalysator-Herstellung in einem Schritt

15.07.2019 | Verfahrenstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics