Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nervenzellen mit Rhythmusgefühl

25.08.2016

Neurowissenschaftler am Deutschen Primatenzentrum zeigen, wie Nervenzellen in Netzwerken miteinander kommunizieren

Denken, Fühlen, Handeln – unser Gehirn ist die Schaltzentrale im Kopf, die all unser Tun steuert. Ein Netzwerk aus etwa 100 Milliarden Nervenzellen die durch rund 100 Billionen Synapsen miteinander verknüpft sind, bildet die Grundlage dafür. Wie dieses neuronale Netzwerk organisiert ist und wie der Informationsfluss zwischen verschiedenen Hirnarealen koordiniert wird, haben Neurowissenschaftler am Deutschen Primatenzentrum (DPZ) – Leibniz-Institut für Primatenforschung jetzt erstmals auf der Ebene einzelner Nervenzellen untersucht.


Schematische Darstellung der Netzwerkstruktur der Hirnareale AIP, F5 und M1. Graue Flächen: Module, rote, blaue und violette Punkte: Knotenpunkte oder hubs, blaue durchbrochene Linie: rich-club

Abbildung: Benjamin Dann

Durch Studien mit Rhesusaffen haben sie herausgefunden, dass die Nervenzellen in den verschiedenen Hirnarealen, die die Greifbewegungen unserer Hände kontrollieren, stark miteinander kommunizieren und in arealübergreifenden funktionellen Gruppen organisiert sind. Außerdem konnten sie zeigen, dass einige wenige Nervenzellen das Netzwerk steuern, indem sie als zentrale Knotenpunkte (hubs) fungieren und den Informationsfluss innerhalb des Nervenzellverbunds koordinieren.

Diese Knotenpunkt-Nervenzellen kommunizieren zudem sehr stark untereinander (rich-club) und bilden somit ein arealüberspannendes Rückgrat für Kommunikation. Interessanterweise unterscheidet sich die Art der Kommunikation der Knotenpunkt-Nervenzellen vom Rest des Netzwerks. So erfolgt deren Informationsweiterleitung durch rhythmische Aktivität, die untereinander gleichgeschaltet ist.

Dies lässt vermuten, dass größere Gruppen von Nervenzellen sich untereinander rhythmisch synchronisieren, um Bereiche des Gehirns miteinander zu verbinden und bestimmte Aufgaben zu bewältigen (eLife, 2016).

Die Leistungen unseres Gehirns wie Denken, Erinnern, Wahrnehmen und Bewegungssteuerung können nur durch die Interaktion des Nervenzellnetzwerks im Gehirn entstehen. Wie dieses Netzwerk aufgebaut ist, ist Gegenstand zahlreicher Forschungsprojekte. Durch theoretische mathematische Analysen und Hirnuntersuchungen wie Elektroenzephalografie (EEG) oder funktionelle Magnetresonanztomografie (fMRT) ist bereits seit längerem bekannt, dass verschiede Regionen des Gehirns als ein komplexes Netzwerk organisiert sind, welches eine schnelle und fehlerresistente Informationsverarbeitung ermöglicht. Allerdings ist es mit diesen Methoden nicht möglich, die Aktivität einzelner Nervenzellen, der Grundbausteine des Gehirns, zu messen. Dies ist jedoch notwendig, wenn man verstehen will, wie beispielsweise neuronale Krankheiten wie Schizophrenie und Autismus entstehen.

Untersuchungen auf Nervenzellebene

„In unserer Studie wollten wir herausfinden, wie das Netzwerk einzelner Nervenzellen über mehrere Hirnareale organisiert ist“ sagt Benjamin Dann, Doktorand in der Abteilung Neurobiologie am Deutschen Primatenzentrum und Erstautor der Studie. „Außerdem wollten wir wissen, wie genau der Informationsfluss zwischen Nervenzellen verschiedener Hirnareale koordiniert wird.“

Dafür wurden drei Rhesusaffen darauf trainiert, wiederholt eine Greifaufgabe auszuführen. Während der Bewegung wurde die Aktivität ihrer Nervenzellen in drei verschiedenen Hirnarealen, dem anterioren intraparietalen Kortex (AIP), dem prämotorischen Kortex (F5) und dem primären Motorkortex (M1), mit sogenannten Mikroelektrodenarrays gemessen. Die Hirnregionen bilden zusammen ein neuronales Netzwerk, das die Planung und Ausführung von Handgriffen steuert.

Nervenzellen im rich-club feuern rhythmisch

Die Wissenschaftler fanden heraus, dass die Nervenzellen aller drei Hirnareale ein stark verbundenes Netzwerk bilden, das wiederum in funktionellen Untereinheiten (Modulen) organisiert ist. Überraschenderweise entsprechen diese Module nicht genau den drei betrachteten Hirnarealen. 84 Prozent der Module waren nicht auf ein Areal begrenzt, sondern umfassten auch Nervenzellen der anderen beiden Areale. Darüber hinaus konnten sie zeigen, dass es innerhalb des Netzwerkes einzelne Nervenzellen gibt, die eine zentrale Funktion übernehmen.

„Diese Knotenpunkte oder hubs haben unverhältnismäßig mehr Verbindungen im Netzwerk als die übrigen Nervenzellen“, erklärt Benjamin Dann. „Zusätzlich sind sie stark untereinander verbunden und bilden einen sogenannten rich-club auf Zellebene, welcher dazu dienen kann, die Informationsweiterleitung im Netzwerk zu koordinieren.“

Darüber hinaus beobachteten die Wissenschaftler, dass die Nervenzellen im rich-club rhythmisch aktiv sind und auch mit dem Rest des Netzwerks rhythmisch kommunizieren. Die anderen Nervenzellen sind dagegen vorwiegend arrhythmisch aktiv. „Wir konnten damit erstmals zeigen, dass die rhythmische Aktivität in festen Frequenzen ein wichtiges Merkmal der zentralen, den Informationsfluss koordinierenden, hub- und rich-club-Nervenzellen darstellt“, fasst Benjamin Dann seine Ergebnisse zusammen.

„Wir vermuten, dass rhythmische Synchronität von Nervenzellen ein zentraler Mechanismus für schnelle und robuste Kommunikation innerhalb des gesamten Gehirns ist, mit der auch entfernte Gruppen von Neuronen funktionell verbunden werden können, um bestimmte Gedanken oder Handlungen auszuführen“.

Die Studie kann künftig dazu beitragen, neuronale Erkrankungen wie Schizophrenie oder Autismus besser zu verstehen, da diese unter anderem durch Störungen von rhythmischer Synchronität wie auch der Netzwerk-Struktur verursacht werden. Die genaue Kenntnis dieser Prozesse im Gehirn ist wichtig, um neue Therapien entwickeln zu können.

Originalpublikation

Dann, B., Michaels, J., Schaffelhofer, S., Scherberger H. (2016): Uniting functional network topology and oscillations in the fronto-parietal single unit network of behaving primates. eLife, DOI: http://dx.doi.org/10.7554/eLife.15719

Kontakt und Hinweise für Redaktionen

Benjamin Dann
Tel.: +49 551 3851-484
E-Mail: bdann@dpz.eu

Prof. Dr. Hansjörg Scherberger
Tel.: +49 551 3851-494
E-Mail: hscherberger@dpz.eu

Dr. Sylvia Siersleben (Kommunikation)
Tel.: +49 551 3851-163
E-Mail: ssiersleben@dpz.eu


Die Deutsches Primatenzentrum GmbH (DPZ) - Leibniz-Institut für Primatenforschung betreibt biologische und biomedizinische Forschung über und mit Primaten auf den Gebieten der Infektionsforschung, der Neurowissenschaften und der Primatenbiologie. Das DPZ unterhält außerdem vier Freilandstationen in den Tropen und ist Referenz- und Servicezentrum für alle Belange der Primatenforschung. Das DPZ ist eine der 88 Forschungs- und Infrastruktureinrichtungen der Leibniz-Gemeinschaft.

Weitere Informationen:

http://www.dpz.eu - Homepage Deutsches Primatenzentrum
http://www.dpz.eu/de/startseite/einzelansicht/news/nervenzellen-mit-rhythmusgefu... - Pressemitteilung und weitere Informationen
http://medien.dpz.eu/webgate/keyword.html?currentContainerId=3481 - Mediathek mit druckfähigen Bildern

Dr. Susanne Diederich | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der Türsteher im Gehirn
06.08.2020 | Institute of Science and Technology Austria

nachricht Peptide: Forschungs-Erfolg mit den kleinen Geschwistern der Proteine
06.08.2020 | Hochschule Coburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Projektabschluss ScanCut: Filigranere Steckverbinder dank Laserschneiden

Eine entscheidende Ergänzung zum Stanzen von Kontakten erarbeiteten Wissenschaftlerinnen und Wissenschaftler des Fraunhofer-Instituts für Lasertechnik ILT. Die Aachener haben im Rahmen des EFRE-Forschungsprojekts ScanCut zusammen mit Industriepartnern aus Nordrhein-Westfalen ein hybrides Fertigungsverfahren zum Laserschneiden von dünnwandigen Metallbändern entwickelt, wodurch auch winzige Details von Kontaktteilen umweltfreundlich, hochpräzise und effizient gefertigt werden können.

Sie sind unscheinbar und winzig, trotzdem steht und fällt der Einsatz eines modernen Fahrzeugs mit ihnen: Die Rede ist von mehreren Tausend Steckverbindern im...

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: Elektrogesponnene Vliese mit gerichteten Fasern für die Sehnen- und Bänderrekostruktion

Sportunfälle und der demografische Wandel sorgen für eine gesteigerte Nachfrage an neuen Möglichkeiten zur Regeneration von Bändern und Sehnen. Eine Kooperation aus italienischen und deutschen Wissenschaftler*innen forschen gemeinsam an neuen Materialien, um dieser Nachfrage gerecht zu werden.

Dem Team ist es gelungen elektrogesponnene Vliese mit hochgerichteten Fasern zu generieren, die eine geeignete Basis für Ersatzmaterialien für Sehnen und...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: Neue Strategie gegen Osteoporose

Ein internationales Forschungsteam hat einen neuen Ansatzpunkt gefunden, über den man möglicherweise den Knochenabbau bei Osteoporose verringern und die Knochengesundheit erhalten kann.

Die Osteoporose ist die häufigste altersbedingte Knochenkrankheit. Weltweit sind hunderte Millionen Menschen davon betroffen. Es wird geschätzt, dass eine von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovationstage 2020 – digital

06.08.2020 | Veranstaltungen

Innovationen der Luftfracht: 5. Air Cargo Conference real und digital

04.08.2020 | Veranstaltungen

T-Shirts aus Holz, Möbel aus Popcorn – wie nachwachsende Rohstoffe fossile Ressourcen ersetzen können

30.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der Türsteher im Gehirn

06.08.2020 | Biowissenschaften Chemie

Kognitive Energiesysteme: Neues Kompetenzzentrum sucht Partner aus Wissenschaft und Wirtschaft

06.08.2020 | Energie und Elektrotechnik

Projektabschluss ScanCut: Filigranere Steckverbinder dank Laserschneiden

06.08.2020 | Verfahrenstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics