Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nektar: Süßer Lohn für Blüten-Bestäuber

17.03.2014

Damit die Pflanzen die potenziellen Pollenüberträger anlocken und für ihre Dienste belohnen können, haben sie spezielle Organe entwickelt.

In den sogenannten Nektarien werden die im Nektar enthaltenen Zuckermoleküle produziert. Wissenschaftler haben jetzt den Zuckertransporter identifiziert, der eine Schlüsselrolle bei der pflanzlichen Nektarproduktion spielt.


Blüten des Wilden Tabaks Nicotiana attenuata.

Danny Kessler / Max-Planck-Institut für chemische Ökologie


Fruchtknoten (Ovarium) einer Tabakblüte mit Nektarium.

Danny Kessler / Max-Planck-Institut für chemische Ökologie

Mithilfe von SWEET9 wird Zucker in außerzelluläre Bereiche der Nektarien transportiert und abgesondert. Bei der Evolution von Blütenpflanzen, die ihre Bestäuber mit süßem Nektar anlocken und belohnen, könnte also SWEET9 eine entscheidende Rolle gespielt haben.

Blütenpflanzen brauchen den Zucker-Transporter SWEET9 für die Nektarproduktion

Die Evolution hat eine unglaubliche Vielfalt von Blütenpflanzen und sie bestäubender Insekten hervorgebracht. Damit die Pflanzen die potenziellen Pollenüberträger anlocken und für ihre Dienste belohnen können, haben sie spezielle Organe entwickelt. In den sogenannten Nektarien werden die im Nektar enthaltenen Zuckermoleküle produziert.

Wissenschaftler vom Max-Planck-Institut für chemische Ökologie in Jena haben zusammen mit Kollegen aus Stanford und Duluth (USA) den Zuckertransporter identifiziert, der eine Schlüsselrolle bei der pflanzlichen Nektarproduktion spielt. Mithilfe von SWEET9 wird Zucker in außerzelluläre Bereiche der Nektarien transportiert und abgesondert. Bei der Evolution von Blütenpflanzen, die ihre Bestäuber mit süßem Nektar anlocken und belohnen, könnte also SWEET9 eine entscheidende Rolle gespielt haben. (Nature, 16. März 2014, doi: 10.1038/nature13082)

Obwohl unbestritten ist, dass der Nektar für die pflanzliche Fortpflanzung eine wichtige Rolle spielt, war bislang unklar, wie Pflanzen Nektar produzieren und absondern. Wissenschaftler um Wolf Frommer, Direktor der Abteilung Pflanzenbiologie an der Carnegie Institution for Science im kalifornischen Stanford, Clay Carter von der University of Minnesota sowie Ian Baldwin vom Max-Planck-Institut für chemische Ökologie in Jena konnten jetzt Leitkomponenten der Zuckersynthese und des Sekretionsmechanismus identifizieren.

Die Forschungsergebnisse, die jetzt in der Zeitschrift Nature veröffentlicht werden, weisen auch darauf hin, dass die Komponenten bereits zu einem frühen Zeitpunkt in der Evolution von Blütenpflanzen für diesen Zweck eingesetzt wurden. 

Die Forscher haben in den Nektarien mit modernsten Analysemethoden nach Transporter-Proteinen für den Zuckertransport gesucht. Mit SWEET9 haben sie den entscheidenden Transporter in drei unterschiedlichen Pflanzenarten identifiziert: der Ackerschmalwand Arabidopsis thaliana, der Rübsaat Brassica rapa und dem Kojotentabak Nicotiana attenuata. In allen drei Arten spielt SWEET9 eine wesentliche Rolle bei der Nektarproduktion. 

Mithilfe von genetisch veränderten Pflanzen, denen SWEET9 fehlt, konnten die Wissenschaftler zeigen, dass diese Pflanzen keinen Nektar mehr absondern, sondern ihn in ihren Stängeln anreichern. Außerdem stellte sich heraus, dass dieselben Gene, die für die Saccharose-Produktion notwendig sind, auch für die Nektarbildung in den Blüten verantwortlich sind. Saccharose wird in den Nektarien produziert und dann von SWEET9 in die außerzellulären Bereiche der Nektarien transportiert.

In diesen Zellzwischenräumen wird der Zucker in eine Mischung aus Saccharose, Glucose (Traubenzucker) und Fructose (Fruchtzucker) umgewandelt. In allen drei getesteten Pflanzenarten stellen diese drei Zucker die hauptsächlichen Lösungsbestandteile im Nektar dar. Von Bienen gesammelt bildet der süße Nektar die Grundvoraussetzung für die Honigproduktion.

„SWEET-Transporter sind wichtig für die innerpflanzliche Weiterleitung der Fotosynthese-Produkte von den Blättern in die Samen. Wir glauben, dass der nektarielle Zucker-Transporter SWEET9 etwa zu der Zeit entstanden ist, als sich die ersten Blütennektarien bildeten. Dieser Prozess ist möglicherweise ein entscheidender Entwicklungsschritt im Pflanzenreich gewesen: Durch das Anlocken und Belohnen von Bestäubern konnte die enorme genetische Vielfalt der Pflanzen entstehen“, fasst Studienleiter Frommer zusammen.

Originalveröffentlichung:
Lin, W., Sosso, D., Chen, L.-Q., Gase, K., Kim, S.-G., Kessler, D., Klinkenberg, P. M., Gorder, M., Hou, B.-H., Qu, X.-Q., Carter, C., Baldwin, I. T., Frommer, W. (2014). Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature, 16. März 2014, doi: 10.1038/nature13082
http://dx.doi.org/10.1038/nature13082

Weitere Informationen:
Wolf Frommer, Carnegie Institution for Science, Stanford CA, USA,. +1 650 325-1521 x208, e-mail wfrommer@carnegiescience.edu
Ian T. Baldwin, Max-Planck-Institut für chemische Ökologie, Tel. +49 3641 57-1100,
e-mail: baldwin@ice.mpg.de

Kontakt und Bildanfragen
Angela Overmeyer M.A., MPI für chemische Ökologie, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, overmeyer@ice.mpg.de

Download von hochaufgelösten Fotos über http://www.ice.mpg.de/ext/735.html

Weitere Informationen:

http://www.ice.mpg.de/ext/1064.html?&L=1

Angela Overmeyer | Max-Planck-Institut

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics