Nanowissenschaften – Vom Beginn des Lebens

Foto: Juancat / Fotolia.com

Welche Prozesse könnten einst die nicht-lebende Materie angeregt haben, eine evolutionäre Maschinerie auszubilden? Wie konnte sich dieses frühe molekulare Leben dauerhaft etablieren? Und welche Netzwerke und Bedingungen des Stoffwechsels waren notwendig, um die ersten Zyklen der molekularen Evolution anzufüttern?

„Es ist an der Zeit, diese Fragestellung mit überschaubaren, experimentell überprüfbaren Hypothesen anzugehen“, sagt Dieter Braun, Professor für System-Biophysik an der LMU und Mitglied der Nanosystems Initiative Munich (NIM).

Anlässlich des Vortrags von Professor John Sutherland vom MRC Laboratory of Molecular Biology in Cambridge, eines bekannten Experten für präbiotische Chemie, am 3. Juli 2015 gründen mehrere Forscher an der LMU des Center of Nanoscience (CeNS) und der NanoSystems Initiative (NIM) das Netzwerk „Origin of Life Initiative Munich“ (OLIM), um interdisziplinär die Ursprünge der Evolution zu erforschen. „Das Ziel des Netzwerkes ist es, experimentelle Erkenntnisse über die ersten Schritte zu gewinnen, mit denen sich Moleküle zu autonom zu lebenden Systemen entwickelten.“, sagt Braun.

Am Center of Nanoscience und an der die NanoSystems Initiative arbeiten bereits seit Jahren Wissenschaftler verschiedener Fachrichtungen zusammen. Das neue Netzwerk OLIM hat zum Ziel, die Nanowissenschaft des Lebensursprungs zu erforschen.

Das Netzwerk ist an der LMU angesiedelt, schließt sich aber auch mit Gruppen der Technischen Universität München und der Max-Planck-Institute für Astronomie und Biochemie zusammen. „Die LMU mit ihrer breiten Expertise bildet einen einzigartigen Forschungsstandort, um der noch jungen Disziplin der experimentellen Forschung zu den Ursprüngen des Lebens den nötigen Schub zu verleihen“, sagt Dieter Braun.

Die Forschung zum Ursprung des Lebens vereint viele Disziplinen: Astronomie, Geologie, Chemie, Physik und Biologiee. Die Astronomie beschreibt, wie Planeten und ihre molekulare Grundausstattung im All entstehen, die Geologie rekonstruiert die Bedingungen auf dem noch jungen Planeten. Die Chemie liefert Erkenntnisse darüber, wie die ersten informationstragenden Moleküle wie RNA oder Proteine entstanden sind.

Die Physik fokussiert, wie Nicht-Gleichgewichtszustände möglich sind, unter denen biologische Information entsteht – entgegen der Entropie. Und die Biologie schließlich gibt uns einen – wenn auch begrenzten – Rückblick auf die evolutionäre Erfolgsgeschichte.

Das Netzwerk wird die Münchner Wissenschaftler dieser Fachrichtungen zusammenführen, die ein genuines Interesse haben, die ersten Schritte der evolutionären Dynamik zu verstehen – einer Dynamik, die schließlich aus nicht-lebendiger Materie das reichhaltige Leben hat entstehen lassen, wie wir es heute kennen.

Kurzfristig soll sich das Netzwerk als eine permanente Diskussionsplattform etablieren. Mittelfristig soll es ein jährliches Treffen mit den Wissenschaftlern um Thomas Henning vom Max-Planck-Institut für Astronomie, Heidelberg, und Oliver Trapp von der Universität Heidelberg, die sich in der „Heidelberger Initiative zur Erforschung des Ursprungs des Lebens (HIFOL)“ zusammengeschlossen, haben ins Leben rufen. Ziel ist es, dass beide Initiativen einen gemeinsamen Antrag auf einen Transregio-Sonderforschungsbereich bei der Deutschen Forschungsgemeinschaft einreichen.

Welche geologischen Bedingungen müssen auf der Erde geherrscht haben, um den Übergang von toter zu lebender Materie zu ermöglichen? Welche Nicht-Gleichgewichtsprozesse auf der jungen Erde, welche Synthesewege könnten zu den frühen Biomolekülen führen? Kann die moderne Thermodynamik ein Rahmen abgeben für die Evolution von Systemen, die nicht im Gleichgewicht sind. Was können wir von der modernen Nanowissenschaft wie zum Beispiel dem DNA-Origami lernen? Wie weit können wir biologische Signaturen bis zum Ursprung des frühen Metabolismus und der frühen Translation zurückverfolgen?

Solche Themen, die das Netzwerk bearbeiten soll, sind in der Tat Fragen der Grundlagenforschung. Die Erforschung des Ursprungs des Lebens hat aber bereits eine Reihe innovativer biotechnologischer Anwendung ermöglicht. Das CeNS konnte eine Reihe rasch wachsender Start-up-Firmen etablieren, darunter Nanion und NanoTemper. NanoTemper beispielsweise ist entstanden aus der Erforschung des Lebensursprungs zu Thermalgradienten und ist heute ein weltweit agierendes Münchner Unternehmen mit mehr als 70 Mitarbeitern.

Der Vortrag von John Sutherland findet im CeNS Seminar der LMU (H 030) um 15:30 Uhr statt. Mehr Informationen auf den Seiten des Center of Nanoscience.
http://www.cens.de/calendar/summer-term-2015/sutherland/#c5515

Kontakt:
Prof. Dieter Braun
Systems Biophysics
Ludwig-Maximilians-Universität München

Tel.: 089 – 2180 2317
E-Mail: dieter.braun@lmu.de

Media Contact

Luise Dirscherl idw - Informationsdienst Wissenschaft

Weitere Informationen:

http://www.uni-muenchen.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer