Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Nachtfalter als Wegweiser zur Detektion von Sprengstoffen in kleinsten Spuren

29.05.2012
Fühlersystem und Sinnesorgane des Nachfalters „Bombyx Mori“, welcher einzelne Pheromonmoleküle (weibliche Hormone) detektieren kann, haben die Wissenschaftler des Labors NS3E (Nanomaterialen für Systeme unter extremen Belastungen- ISL-CNRS) bei der Konzeption ihres Sensors inspiriert, der winzige Spuren verschiedener Sprengstoffe detektieren kann.

Selbst Konzentrationen von ca. 800 ppt (parts per trillions) TNT konnten mit einem nanostrukturierten Sensor mit Hilfe der Nano-Calorimetrie detektiert werden. Hierdurch konnte der Weg für die Entwicklung einer extrem empfindlichen Künstlichen Nase geebnet werden. Die Arbeiten werden am 29. Mai 2012 in "Angewandte Chemie" veröffentlicht.


Illustration für Angewandte Chemie, Bombyx Muri und nanostrukturierter Mikrocantilever
Illustration Angewandte Chemie


A,B,C,Sensoren eines Seidenspinners mit mikrometrischen Sensillen, D,E,F, nanostrukturierter Mikrocantiler
Foto: NS3E Fabien Schnell

Der Sensor besteht aus einem Mikrocantilever, auf dem etwa 500 000 Titandioxid-Nanoröhrchen angereiht sind, die alle zusammen eine sehr große Oberfläche ergeben, welche für die Detektion ausschlaggebend ist. Hierdurch konnte der Weg für die Entwicklung einer extrem empfindlichen Künstlichen Nase geebnet werden.Im Bereich Sprengstoffdetektion ist dies ein wirklicher Durchbruch, aber auch für den Umweltschutz bietet sich hier die Möglichkeit, geringste Spuren gewisser organischer Umweltgifte zu detektieren, im Bereich der zivilen Sicherheit sind zahlreiche Einsatzmöglichkeiten denkbar.

Die wirksame Detektion von Sprengstoffen wie Trinitrotoluen (TNT) ist eine große Herausforderungen. Die einzelnen Bestandteile sind sehr flüchtig, für eine Detektion auf Distanz sind extrem empfindliche Sensoren nötig. Aktuelle Systeme können Konzentrationen in der Größenordnung von 1 ppb (ein Molekül pro 10 hoch 9 Moleküle Luft) möglich, eine Leistung, die z.B. für Sicherheitseinrichtungen in Flughäfen unzureichend ist. Hingegen haben viele Tiere einen Geruchssinn, der weit geringere Spuren erschnüffeln kann. Dazu gehört der Bombyx mori oder Seidenspinner. Er kann selbst einige wenige Pheromon-Moleküle erspüren. Seine Antennten bestehen aus kaum millimeterfeinen Fäden, auf welchen eine große Anzahl Sensillen sitzt, kleinste Fasern im Mikrometerbereich, die direkt mit den Sinnesneuronen verbunden sind. Diese Struktur wollten die Wissenschaftler nachahmen.

Das von ihnen entwickelte System besteht aus einem 200µ langen und 30µ breiten Mikro-Cantilever aus Silizium. Dieser Träger wurde mit ungefähr 500 000 Titandioxid-Nanotubes bestückt, die vertikal dort aufgereiht sind. Mit diesen Nanostrukturen soll die Oberfläche des Mikro-Cantilevers um den Faktor 100 vergrößert werden und die Wahrscheinlichkeit, die gesuchten Moleküle zu erfassen, erheblich erhöht werden. Das Vibrieren des Mikro-Hebels ist der Test, um festzustellen, ob TNT-Spuren in der Umgebungsluft enthalten sind und ob Moleküle durch die Vorrichtung erfasst wurden. Dieser Mikrohebel hat eine eigene Schwingungsfrequenz, die spezifische verändert wird, wenn ein Sprengstoffmolekül absorbiert wird.

Zur Überprüfung der Leistung dieses Sensors haben die Wissenschaftler sehr geringe Mengen TNT kontrolliert freigesetzt. Sie konnten dabei nachweisen, dass die Empfindlichkeit des Systems bei 800 ppq (800 Moleküle pro Billion Moleküle (10 hoch 15) liegt. Kein Gerät ist zur Zeit in der Lage so geringe Konzentrationen von Sprengstoffen nachzuweisen. Dies ist eine ähnlich hohe Empfindlichkeit wie die speziell ausgebildeter Hunde.

Weitere wissenschaftliche Untersuchungen sind noch erforderlich, um ein leicht handhabbares Gerät auf der Grundlage dieser nanostrukturierten Mikro-Cantilever zu entwickeln . Eine nächste Etappe wird die Konzeption eines Geräts sein, das jeweils den einzelnen Sprengstofftyp erkennen kann. Die Wissenschaftler möchten schon jetzt dieses System an die Detektion anderer Sprengstoffe anpassen wie Pentrit, welches in Europa ein ernstes Sicherheitsproblem darstellt. Die Methode könnte weiterhin zur Detektion gewisser leicht flüchtiger Drogen dienen. Im Bereich Umweltschutz könnte dieses bio-inspirierte Verfahren die Messung geringster Spuren von Umweltgiften wie flüchtiger organischer Substanzen ermöglichen, zur Zeit ein Haupt-Gesundheitsrisiko.

NS3E (NS3E, UMR ISL- CNRS 3208) ist ein gemeinsames Forschungslabor des Deutsch-Französischen Forschungsinstituts Saint-Louis (ISL) und dem französischen Forschungsverbund CNRS. Es ist auf die Untersuchung, Konzeption und Charakterisierung von Nanomaterialien unter extremen Belastungen spezialisiert . Gemeinsam mit dem Straßburger Labor für Materialien, Oberflächen und Katalyseverfahren (LMSPC, UMR CNRS-‐UDS 7515) wurde dieser Sensor konzipiert.

Veröffentlicht in Angewandte Chemie International Edition und Deutsche Ausgabe (frontispiece) Juni 2012

Magdalena Kaufmann-Spachtholz | idw
Weitere Informationen:
http://www.isl.eu

Weitere Berichte zu: CNRS Konzentrationen Mikro-Cantilever Molekül NS3E Nachtfalter Nanomaterial Sensor Sprengstoff TNT UMR Umweltgift

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie lassen sich unangenehme Gerüche vermeiden?
31.03.2020 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Konservierung von Hodenzellen zum Erhalt gefährdeter Katzenarten
31.03.2020 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Corona-Pandemie: Medizinischer Vollgesichtsschutz aus dem 3D-Drucker

In Vorbereitung auf zu erwartende COVID-19-Patienten wappnet sich das Universitätsklinikum Augsburg mit der Beschaffung von persönlicher Schutzausrüstung für das medizinische Personal. Ein Vollgesichtsschutz entfaltet dabei in manchen Situationen eine bessere Schutzwirkung als eine einfache Schutzbrille, doch genau dieser ist im Moment schwer zu beschaffen. Abhilfe schafft eine Kooperation mit dem Institut für Materials Resource Management (MRM) der Universität Augsburg, das seine Kompetenz und Ausstattung im Bereich des 3D-Drucks einbringt, um diesen Engpass zu beheben.

Das Coronavirus SARS-CoV-2 wird nach heutigem Wissensstand maßgeblich durch Tröpfcheninfektion übertragen. Dabei sind neben Mund und Nase vor allem auch die...

Im Focus: Hannoveraner Physiker entwickelt neue Photonenquelle für abhörsichere Kommunikation

Ein internationales Team unter Beteiligung von Prof. Dr. Michael Kues vom Exzellenzcluster PhoenixD der Leibniz Universität Hannover hat eine neue Methode zur Erzeugung quantenverschränkter Photonen in einem zuvor nicht zugänglichen Spektralbereich des Lichts entwickelt. Die Entdeckung kann die Verschlüsselung von satellitengestützter Kommunikation künftig viel sicherer machen.

Ein 15-köpfiges Forscherteam aus Großbritannien, Deutschland und Japan hat eine neue Methode zur Erzeugung und zum Nachweis quantenverstärkter Photonen bei...

Im Focus: Physicist from Hannover Develops New Photon Source for Tap-proof Communication

An international team with the participation of Prof. Dr. Michael Kues from the Cluster of Excellence PhoenixD at Leibniz University Hannover has developed a new method for generating quantum-entangled photons in a spectral range of light that was previously inaccessible. The discovery can make the encryption of satellite-based communications much more secure in the future.

A 15-member research team from the UK, Germany and Japan has developed a new method for generating and detecting quantum-entangled photons at a wavelength of...

Im Focus: Nachwuchswissenschaftler der Universität Rostock erfinden einen Trichter für Lichtteilchen

Physiker der Arbeitsgruppe von Professor Alexander Szameit an der Universität Rostock ist es in Zusammenarbeit mit Kollegen von der Universität Würzburg gelungen, einen „Trichter für Licht“ zu entwickeln, der bisher nicht geahnte Möglichkeiten zur Entwicklung von hypersensiblen Sensoren und neuen Technologien in der Informations- und Kommunikationstechnologie eröffnet. Die Forschungsergebnisse wurden jüngst im renommierten Fachblatt Science veröffentlicht.

Der Rostocker Physikprofessor Alexander Szameit befasst sich seit seinem Studium mit den quantenoptischen Eigenschaften von Licht und seiner Wechselwirkung mit...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Europäischer Rheumatologenkongress EULAR 2020 wird zum Online-Kongress

30.03.2020 | Veranstaltungen

“4th Hybrid Materials and Structures 2020” findet web-basiert statt

26.03.2020 | Veranstaltungen

Wichtigste internationale Konferenz zu Learning Analytics findet statt – komplett online

23.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Jade Hochschule entwickelt Messverfahren zur Prüfung von Schweißnähten unter Wasser

31.03.2020 | Verfahrenstechnologie

Corona-Pandemie: Medizinischer Vollgesichtsschutz aus dem 3D-Drucker

31.03.2020 | Medizin Gesundheit

Phagen-Kapsid gegen Influenza: Passgenauer Inhibitor verhindert virale Infektion

31.03.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics