Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Elektronen und Ionen ins Gehirn schauen

07.10.2015

Erstmals am Standort Göttingen: Hochauflösende 3D-Elektronenmikroskopie für die Neurowissenschaften

3D-Blick ins Gehirn für die Neurowissenschaften am Forschungsstandort Göttingen Campus: Das Göttinger Exzellenzcluster und DFG-Forschungszentrum für Mikroskopie im Nanometerbereich und Molekularphysiologie des Gehirns (CNMPB) der Universitätsmedizin Göttingen haben gemeinsam mit dem Max-Planck-Institut für Experimentelle Medizin ein Rasterelektronenmikroskop mit fokussiertem Ionenstrahl in Betrieb genommen.


Abbild einer in Plastik eingebetteten Probe aus dem Hirnstamm der Maus. Zu erkennen sind die Myelinscheiden großer Nervenfasern, eine Synapse und ein Teil eines Blutgefäßes.

Foto: möbious/mpi-em

Das hochmoderne Zeiss Crossbeam 450 Mikroskop verbindet zwei Techniken zur Aufnahme hochauflösender Bilder: die Rasterelektronenmikroskopie und eine Ionenfeinstrahlanlage zur Oberflächenanalyse und -verarbeitung. Die Kombination beider Verfahren ermöglicht die dreidimensionale Darstellung kleinster Strukturen bis hin zu Vesikeln innerhalb einer Synapse in hoher Auflösung.

Mit dem neuen Gerät lassen sich jetzt am Forschungsstandort Göttingen auch neurowissenschaftliche Fragestellungen klären, die eine solche Rekonstruktion kleinster Strukturen erfordern. Finanziert wurde das hochmoderne Mikroskop aus Mitteln der Deutschen Forschungsgemeinschaft (DFG) und der Max-Planck-Gesellschaft (MPG).

„Die Technik wurde bisher vor allem in der Materialphysik verwendet. Nun kann sie erstmals auch am Standort Göttingen im Bereich der biomedizinischen Forschung eingesetzt werden“, sagt Dr. Wiebke Möbius vom Max-Planck-Institut für Experimentelle Medizin in Göttingen und Leiterin der Technologie-Plattform Elektronenmikroskopie des CNMPB.

Der Auflösungsbereich des neuen Gerätes erstreckt sich von der räumlichen Abbildung größerer Zusammenhänge, wie lokaler neuronaler Netze oder Einheiten aus Myelinscheiden und Nervenfasern, bis hin zu kleinen Details, wie der Verteilung von Vesikeln innerhalb einer Synapse. Damit werden die technischen Abbildungsmöglichkeiten des CNMPB um eine dreidimensionale Strukturabbildung in hoher Auflösung ergänzt und erweitert. Das Forschungszentrum verfügte bereits mit der STED Mikroskopie von Nobelpreisträger Prof. Dr. Stefan W. Hell über eine preisgekrönte hochauflösende Lichtmikroskopie.

DAS VERFAHREN: 3D-ELEKTRONENMIKROSKOPIE

Um eine dreidimensionale Abbildung kleinster Strukturen zu erreichen, müssen An-sichten feinster Schichten einer Gewebeprobe abgebildet und die Bildinformationen anschließend die einem dreidimensionalen Struktur rekonstruiert werden. Mittels Rasterelektronenmikroskopie wird dafür zunächst ein Elektronenstrahl über die Oberfläche eines Objekts geführt (gerastert), um ein Abbild der Oberfläche zu er-zeugen. Anschließend kommt ein Ionenstrahl aus Gallium-Ionen zum Einsatz. Mit ihm lässt sich ein Objekt wie ein Werkstück mit einem sehr feinen Skalpell bearbeiten. Durch die Kombination beider Techniken wird nach jedem Bearbeitungsschritt Oberflächenmaterial abgetragen und das Objekt erneut erfasst. Auf diese Weise können dreidimensionale Detailbilder rekonstruiert und zu einem komplexen Abbild in hoher Auflösung zusammengefasst werden.

TECHNISCHE DETAILS ZUM VERFAHREN

Damit das Abtragen feinster Schichten von den Gewebeproben gelingt, wird das Gewebe zunächst mit Schwermetallen imprägniert („Kontrastierung“) und in Plastik eingebettet. Im Elektronenmikroskop muss dann mit dem fokussierten Ionenstrahl eine glatte Front in den Gewebeblock geschnitten werden. Von dieser glatten Oberfläche, das sogenannte „block-face“, lässt sich durch Scannen mit dem Elektronenstrahl ein Abbild der eingeschlossenen Strukturen in einer Fläche von ungefähr 20 µm mal 20 µm erstellen.

Die Zellstrukturen werden sichtbar, weil sich unterschiedlich viel Schwermetall im Gewebe einlagert. So entsteht ein Bild aus Hell-Dunkel-Kontrasten, wenn der Elektronenstrahl gestreut wird. Ist ein Bild erzeugt, wird mit dem Ionenstrahl eine dünne Schicht vom Gewebeblock abgetragen und ein weiteres Bild des darunter liegenden Gewebeabschnitts erzeugt. Durch kontinuierliche Wiederholung dieses Vorgangs („serial block-face imaging“) entsteht über viele Stunden eine Serie von Bildern. Auf deren Grundlage kann anschließend am Computer eine dreidimensionale Rekonstruktion der Gewebeprobe erzeugt werden. Die Besonderheit der Ionenstrahl-basierten Technik besteht darin, dass vom Gewebeblock Material in unvorstellbar kleinen Schritten von nur 5 nm abgetragen werden kann. Dies entspricht gerade mal 5 Millionstel Millimetern und ermöglicht damit eine hohe räumliche Auflösung kleinster Strukturen.

KONTAKT:
Max-Planck-Institut für Experimentelle Medizin
Hermann-Rein-Str. 3, 37075 Göttingen
Elektronenmikroskopie, Neurogenetik
CNMPB – Zentrum für Mikroskopie im Nanometerbereich und Molekularphysiologie des Gehirns Exzellenzcluster 171 – DFG-Forschungszentrum 103
Dr. Wiebke Möbius, moebius@em.mpg.de
Telefon 0551 / 38 99 736

WEITERE INFORMATIONEN:
CNMPB – Zentrum für Mikroskopie im Nanometerbereich und Molekularphysiologie des Gehirns Exzellenzcluster 171 – DFG-Forschungszentrum 103
Dr. Heike Conrad, Telefon 0551 / 39-7065
Humboldtallee 23, 37073 Göttingen
heike.conrad@med.uni-goettingen.de
  www.cnmpb.de

Stefan Weller | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers
18.10.2019 | Universität zu Köln

nachricht Das Rezept für eine Fruchtfliege
18.10.2019 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers

18.10.2019 | Biowissenschaften Chemie

Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp

18.10.2019 | Physik Astronomie

Innovative Datenanalyse von Fraunhofer Austria

18.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics