Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Minimalausstattung für den Mikroorganismus

11.08.2015

Bioingenieure identifizieren die Schlüsselgene und -funktionen für das Überleben von Bakterienzellen und eröffnen dadurch eine neue Herangehensweise in der Gentechnik

Bioingenieure von der University of California, San Diego, definieren in Zusammenarbeit mit einem Wissenschaftler der Universität Tübingen in einer neuen Studie die essentielle Menge an Genen und Funktionen, die eine Bakterienzelle zum Leben benötigt.

Diese Arbeit eröffnet neue Ansätze in der Zellingenieurstechnik an Escherichia coli (E. coli) und anderen Mikroorganismen, da sie die grundlegende Frage beantwortet, welche Minimalausstattung bakterielle Zellen zum Überleben brauchen. Die Ergebnisse wurden nun in der Fachzeitschrift "Proceedings of the National Academy of Sciences" (PNAS) veröffentlicht.

Die Wissenschaftler im Labor von Bernhard O. Palsson, dem Galetti-Professor für Bioingenieurwesen der University of California, San Diego, fanden „den kleinsten gemeinsamen Nenner, den Mikroben benötigen, um funktionieren zu können“, wie Palsson sagt.

„Falls der Zelle eines der Gene von dieser Liste fehlt, so kann sie weder funktionieren noch überleben.“ Gearbeitet wurde mit umfangreichen Rechensimulationen, für die Dr. Andreas Dräger vom Zentrum für Bioinformatik der Universität Tübingen Strategien zur eindeutigen Darstellung der Rechenmodelle entwickelt und die Software-Entwicklung betreut hat.

Nach Angaben der Forscher helfen die neuen Ergebnisse, an gentechnische Arbeiten anders als bisher heranzugehen. Werden Mikroben gentechnisch verändert, um wertvolle Substanzen in größeren Mengen herzustellen, so müssen Wissenschaftler in den genetischen Gesamtaufbau der Zellen eingreifen.

Dabei veränderten sie zuweilen auch essentielle Gene der Zelle und deren Funktionen, was zu einer „kranken“ Zelle mit Defekten führte. Mit dem neuen Wissen haben die Bioingenieure eine Liste der minimalen essentiellen Komponenten, die sie erhalten müssen, und können dann zusätzliche Bauanleitungen für die Produktion weiterer Substanzen hinzufügen.

Die Wissenschaftler nennen die überlebenswichtigen Gene und Funktionen das „Paläom“ – in Anspielung auf die angestammte Ausstattung des minimalen mikrobiellen Lebens. Bei anderen Ansätzen, so berichtet Palsson, haben Forscher versucht, das Paläom zu definieren, indem Genomsequenzen verschiedener Organismen verglichen wurden und dabei der Genbestand herausgefiltert wurde, der überall zu finden ist.

„Dies definiert aber lediglich das minimale Genom. Unsere Definition des Paläoms ist deutlich umfassender“, erklärt er. Es handele sich um eine auf der Systembiologie basierende Definition, die neben der minimalen Genmenge auch die minimale Menge von Funktionen, Reaktionen und Prozessen einbezieht, die für den Aufbau der Zelle benötigt werden.

Diese Definition des Paläoms basiert auf Rechenmodellen des zellulären Wachstums von E.-coli-Bakterien unter verschiedenen Voraussetzungen. Die Forscher simulierten das Wachstum eines gut erforschten E.-coli-Stammes unter 333 verschiedenen Bedingungen, bei denen sie unter anderem die Hauptnahrungsquellen für die von der Bakterienzelle benötigten Stoffe wie Kohlenstoff, Stickstoff, Phosphor und Schwefel virtuell wechselten.

Das Team beobachtete, welche Menge von Genen unter allen verschiedenen Wachstumsbedingungen stets aktiv war, und konstruierte daraus das Paläom. Insgesamt identifizierte die Autorengruppe 356 solcher Gene. Dabei wirkte der Bioinformatiker Andreas Dräger bei der Erstellung eines austauschbaren Rechenmodells mit, das den gängigen Standards entspricht und die Analyse großer Datenmengen ermöglicht.

„Mit diesem Paläom konnten ein weiterer E.-coli-Stamm sowie drei andere Mikroorganismen ebenfalls arbeiten“, sagt der Erstautor der Studie Laurence Yang aus der Arbeitsgruppe von Palsson. „Wir hoffen, dieses Paläom als Anfangswerkzeug nutzen zu können, um Wachstumsmodelle für weitere Organismen zu erstellen.“ Diese könnten wiederum als Basis dienen, wenn die Organismen in der Gentechnik genutzt werden sollen.

Originalpublikation:
Laurence Yang, Justin Tan, Edward J. O’Brien, Jonathan M. Monk, Donghyuk Kim, Howard J. Li, Pep Charusanti, Ali Ebrahim, Colton J. Lloyd, James T. Yurkovich, Bin Du, Alex Thomas, Andreas Dräger und Bernhard O. Palsson: Systems biology definition of the core proteome of metabolism and expression is consistent with high-throughput data. Proceedings of the National Academy of Sciences (PNAS), Online-Veröffentlichung, 10. August 2015, DOI: 10.1073/pnas.1501384112

Kontakt:
Dr. Andreas Dräger
Universität Tübingen
Zentrum für Bioinformatik Tübingen
andreas.draeger[at]uni-tuebingen.de

Dr. Karl Guido Rijkhoek | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.uni-tuebingen.de/

Weitere Berichte zu: Bakterienzelle Bioinformatik Mikroorganismen Mikroorganismus Zelle Zellen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie sich Nervenzellen zum Abruf einer Erinnerung gezielt reaktivieren lassen
29.05.2020 | Universität Heidelberg

nachricht Ein Hormon nach Pflanzenart
29.05.2020 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartiges Covid-19-Schnelltestverfahren auf Basis innovativer DNA-Polymerasen entwickelt

Eine Forschungskooperation der Universität Konstanz unter Federführung von Professor Dr. Christof Hauck (Fachbereich Biologie) mit Beteiligung des Klinikum Konstanz, eines Konstanzer Diagnostiklabors und des Konstanzer Unternehmens myPOLS Biotec, einer Ausgründung aus der Arbeitsgruppe für Organische Chemie / Zelluläre Chemie der Universität Konstanz, hat ein neuartiges Covid-19-Schnelltestverfahren entwickelt. Dieser Test ermöglicht es, Ergebnisse in der Hälfte der Zeit zu ermitteln – im Vergleich zur klassischen Polymerase-Ketten-Reaktion (PCR).

Die frühe Identifikation von Patienten, die mit dem neuartigen Coronavirus (SARS-CoV-2) infiziert sind, ist zentrale Voraussetzung bei der globalen Bewältigung...

Im Focus: Textilherstellung für Weltraumantennen startet in die Industrialisierungsphase

Im Rahmen des EU-Projekts LEA (Large European Antenna) hat das Fraunhofer-Anwendungszentrum für Textile Faserkeramiken TFK in Münchberg gemeinsam mit den Unternehmen HPS GmbH und Iprotex GmbH & Co. KG ein reflektierendes Metallnetz für Weltraumantennen entwickelt, das ab August 2020 in die Produktion gehen wird.

Beim Stichwort Raumfahrt werden zunächst Assoziationen zu Forschungen auf Mond und Mars sowie zur Beobachtung ferner Galaxien geweckt. Für unseren Alltag sind...

Im Focus: Biotechnologie: Enzym setzt durch Licht neuartige Reaktion in Gang

In lebenden Zellen treiben Enzyme biochemische Stoffwechselprozesse an. Auch in der Biotechnologie sind sie als Katalysatoren gefragt, um zum Beispiel chemische Produkte wie Arzneimittel herzustellen. Forscher haben nun ein Enzym identifiziert, das durch die Beleuchtung mit blauem Licht katalytisch aktiv wird und eine Reaktion in Gang setzt, die in der Enzymatik bisher unbekannt war. Die Studie ist in „Nature Communications“ erschienen.

Enzyme – in jeder lebenden Zelle sind sie die zentralen Antreiber für biochemische Stoffwechselprozesse und machen dort Reaktionen möglich. Genau diese...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: Innovative Sensornetze aus Satelliten

In Würzburg werden vier Kleinst-Satelliten auf ihren Start vorbereitet. Sie sollen sich in einer Formation bewegen und weltweit erstmals ihre dreidimensionale Anordnung im Orbit selbstständig kontrollieren.

Wenn ein Gegenstand wie der Planet Erde komplett ohne tote Winkel erfasst werden soll, muss man ihn aus verschiedenen Richtungen ansehen und die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gebäudewärme mit "grünem" Wasserstoff oder "grünem" Strom?

26.05.2020 | Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

Urban Transport Conference 2020 in digitaler Form

18.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Wie sich Nervenzellen zum Abruf einer Erinnerung gezielt reaktivieren lassen

29.05.2020 | Biowissenschaften Chemie

Wald im Wandel

29.05.2020 | Agrar- Forstwissenschaften

Schwarzer Stickstoff: Bayreuther Forscher entdecken neues Hochdruck-Material und lösen ein Rätsel des Periodensystems

29.05.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics