Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Langsamer geht's schneller: Wie die Signalübertragung in Zellen von trägen Enzymen profitiert

28.02.2012
Ein Forschungsteam um Prof. Dr. Matthias Weiss, Universität Bayreuth, hat mittels Computersimulationen herausgefunden, wie enzymatische Reaktionen im Zellplasma durch anomale Diffusion gefördert werden. In den "Europhysics Letters" stellen die Wissenschaftler ihre Forschungsergebnisse vor.

Enzymatische Reaktionen sind von fundamentaler Bedeutung für lebende Zellen: Ein Enzym bindet an ein Protein, das dadurch eine chemische Veränderung erfährt und so in die Lage versetzt wird, eine für die Zelle lebenswichtige Funktion zu erfüllen. Oft ist das modifizierte Protein seinerseits ein Enzym, das nach seiner Veränderung weitere biochemische Reaktionen anstößt.

Ein prominentes Beispiel hierfür ist das Enzym MAP-Kinase (mitogen-activated protein kinase), das eine wichtige Funktion bei der Herstellung neuer Proteine innerhalb der Zelle hat. Es erfüllt diese Aufgabe nur, wenn es an zwei Stellen durch dasselbe Enzym verändert ("phosphoryliert") und dadurch aktiviert worden ist.

Aber nicht jedes Mal, wenn sich eine MAP-Kinase und ein aktivierendes Enzym im Zellplasma treffen, kommt es tatsächlich zu dieser doppelten enzymatischen Reaktion. In der Regel müssen die Partnermoleküle mehrere Anläufe unternehmen, bis die MAP-Kinase phosphoryliert ist. Erschwerend kommt hinzu, dass beide Molekülsorten nur in geringen Mengen im Zellplasma vorkommen. Wenn also die Partnermoleküle nach einem nicht erfolgreichen Versuch weit auseinanderdriften würden, könnte es sehr lange dauern, bis sich wieder eine Gelegenheit zur Phosphorylierung ergibt.

Wie kann die Zelle diese Abstände verkürzen und dafür sorgen, dass sich die MAP-Kinase und das aktivierende Enzym schnell wieder treffen? Wie ist gewährleistet, dass die Partnermoleküle auch nach mehreren missglückten Anläufen nahe beieinander bleiben, um einen weiteren Reaktionsversuch zu unternehmen? Diese Frage hat ein Forschungsteam um Prof. Dr. Matthias Weiss, Lehrstuhl für Experimentalphysik I an der Universität Bayreuth, jetzt durch Computersimulationen aufklären können.

Solange MAP-Kinase und aktivierendes Enzym auf Partnersuche sind, wandern sie ziellos im Zellplasma umher ("Diffusion"). Diese Diffusion verläuft, wie das Team von Prof. Weiss in den letzten Jahren experimentell zeigen konnte, meist anomal. Anomale Diffusion ist dadurch charakterisiert, dass – bildlich ausgedrückt – der Bewegungsdrang von Molekülen schnell erlahmt und sie lange Wege scheuen. Physikalisch gesprochen: Das Umfeld, in dem MAP-Kinase und aktivierendes Enzym zwecks Partnersuche unterwegs sind, wächst nicht proportional mit der Suchzeit an, sondern nur mit einer geringeren Potenz, z.B. mit der Quadratwurzel der Suchzeit. In den Bayreuther Experimenten wurde auch die Ursache dafür erkennbar. Weil sich im Zellplasma eine große Zahl von Makromolekülen auf engem Raum befindet, ist die Bewegungsfreiheit von Proteinen stark eingeschänkt.

Damit fördert die anomale Diffusion die Aktivierung der MAP-Kinase. Zwar dauert es zunächst relativ lange, bis sich zwei Partnermoleküle begegnen. Aber haben sie sich erst einmal gefunden, bleiben sie für lange Zeit in unmittelbarer Nähe zueinander – bis schließlich beide enzymatischen Reaktionen (Phosphorylierungen) erfolgt sind und die MAP-Kinase aktiviert ist. Die Computersimulationen zeigen dabei auch, dass die anomale Diffusion umso effizienter wirkt, je mehr aufeinanderfolgende Phosphorylierungen für die Aktivierung eines Enzyms nötig sind. Denn dann kommt es besonders auf ein schnelles Wiederfinden der Partner an.

"Die Aktivierung der MAP-Kinase ist nur ein Ausschnitt aus einer ganzen Kette von zellulären Prozessen, die in einer Kaskade aufeinanderfolgen", erklärt Prof. Dr. Matthias Weiss. So muss das Enyzm, das die MAP-Kinase aktivieren soll, seinerseits durch ein vorausgehendes Signal aktiviert werden. Auch hier – wie an vielen weiteren Stellen – kann die anomale Diffusion im Zellplasma ihre effizienzfördernde Wirkung entfalten. So kommt die anomale Diffusion letztlich der gesamten Kaskade von Prozessen zugute. Es ist paradoxerweise der Trägheit der Molekularbewegung zu verdanken, dass das Endsignal umso schneller im Zellkern ankommt.

Veröffentlichung:

Marcel Hellmann, Dieter W. Heermann and Matthias Weiss,
Enhancing phosphorylation cascades by anomalous diffusion,
in: EPL (Europhysics Letters), Vol. 97, Number 5
DOI: 10.1209/0295-5075/97/58004
Kontaktadresse für weitere Informationen:
Prof. Dr. Matthias Weiss
Lehrstuhl für Experimentalphysik I
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49 (0)921 55-2500 und -2501
E-Mail: matthias.weiss@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen
20.07.2018 | Universitätsklinikum Heidelberg

nachricht Erwiesen: Mücken können tropisches Chikungunya-Virus auch bei niedrigen Temperaturen verbreiten
20.07.2018 | Bernhard-Nocht-Institut für Tropenmedizin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics