Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kommunikation in der Zelle: wichtiger Teilschritt der Signalübermittlung aufgeklärt

28.05.2018

Die Wirksamkeit neuer Arzneistoffe hängt entscheidend vom grundlegenden Verständnis der komplexen Prozesse einer Körperzelle ab. Wissenschaftler der kalifornischen Stanford University und der Charité – Universitätsmedizin Berlin haben einen wichtigen molekularen Schritt der zellulären Signalweitergabe entschlüsselt und im Fachjournal Nature* veröffentlicht. Ihre Erkenntnisse können dazu beitragen, spezifische Wirkstoffe gegen verschiedene Krankheiten zu entwickeln, zum Beispiel gegen Asthma und Bluthochdruck.

Signale werden innerhalb des Körpers oft mit Hilfe von Botenstoffen übermittelt. Diese Moleküle binden an spezifische Andockstellen auf der Oberfläche der Zielzelle und lösen eine Reihe von Folgereaktionen im Inneren der Zelle aus. Die größte Familie von Andockstellen sind die sogenannten G-Protein-gekoppelten Rezeptoren (GPCR).


Molekülstruktur von Arrestin (lila und türkis), gebunden an einen GPCR (rot) in der Zellmembran (horizontale schwarze Linien). Die veröffentlichte Studie untersuchte, wie der „Kern“ und der „Schwanz“ des Rezeptors Veränderungen in der molekularen Struktur von Arrestin auslösen und damit die Bindung von Arrestin an den Rezeptor stimulieren.

Copyright: Naomi Latorraca und Ron Dror/Stanford University

Diese GPCRs sind nicht nur an der Verarbeitung von Sinnesreizen beteiligt, sie sind auch ein wichtiges Ziel für die medikamentöse Behandlung von Krankheiten wie Asthma, Schizophrenie, Bluthochdruck und Krebs. 30 bis 40 Prozent aller derzeit verschriebenen Medikamente gegen diese Erkrankungen zielen auf die GPCRs ab.

Die Funktionsweise der GPCRs in der Zelle hängt davon ab, wie die Rezeptoren mit verschiedenen Proteinen in der Zelle wechselwirken. Eines dieser Proteine ist das Arrestin. Es steuert, welche Signalwege durch verschiedene Rezeptoren und ihre verschiedenen Bindungspartner aktiviert werden.

Das Ziel der Studie war es, den molekularen Mechanismus der Aktivierung des GPCR-Arrestin-Komplexes aufzuklären. Hierzu wurde mit Hilfe von Computersimulationen und Fluoreszenzspektroskopie die Veränderungen in der molekularen Struktur des an den Rezeptor gebundenen Arrestins überwacht.

Die Ergebnisse erlauben erstmals einen detaillierten Einblick in die molekularen Interaktionen von GPCR und Arrestin während der Signalweitergabe in der Zelle. Dr. Martha Sommer vom Institut für Medizinische Physik und Biophysik der Charité über die Bedeutung ihrer Forschung für die Grundlagenmedizin:

„Je besser wir verstehen, wie diese Rezeptoren mit den Bindungspartnern im Inneren der Zelle interagieren, desto besser sind wir in der Lage, Medikamente zu entwickeln, die eine gewünschte therapeutische Wirkung haben, aber unerwünschte und schädliche Nebenwirkungen vermeiden.“

Nachfolgende Studien sollen den Blick auf die Vorgänge zwischen GPCR und Arrestin weiter schärfen, um die Entwicklung von Arzneimitteln zu ermöglichen, die spezifisch auf diesen Signalweg einwirken.

Publikation:
* Latorraca NR, et al. Molecular mechanism of GPCR-mediated arrestin activation. Nature. 2018 May 2. DOI: 10.1038/s41586-018-0077-3.

Kooperation und Förderung:
Die Studie ist eine Kooperation zwischen der Charité und Prof. Dr. Ron Dror von der Stanford University in Kalifornien, USA. Die AG Arrestin der Charité wird von der Deutschen Forschungsgemeinschaft gefördert, im Rahmen des Sonderforschungsbereichs 740 „Von Molekülen zu Modulen: Organisation und Dynamik zellulärer Funktionseinheiten“.

Bildunterschrift:
Molekülstruktur von Arrestin (lila und türkis), gebunden an einen GPCR (rot) in der Zellmembran (horizontale schwarze Linien). Die veröffentlichte Studie untersuchte, wie der „Kern“ und der „Schwanz“ des Rezeptors Veränderungen in der molekularen Struktur von Arrestin auslösen und damit die Bindung von Arrestin an den Rezeptor stimulieren. Copyright: Naomi Latorraca und Ron Dror/Stanford University.

Kontakt:
Dr. Martha Sommer
Institut für Medizinische Physik und Biophysik
Charité – Universitätsmedizin Berlin
t: +49 30 450 524 200
E-Mail: martha.sommer@charite.de

Links:
- Institut für Medizinische Physik und Biophysik
https://biophysik.charite.de/
- AG Arrestin am Institut für Medizinische Physik und Biophysik
https://biophysik.charite.de/forschung/ag_arrestin/
- Originaltext der Publikation:
https://www.nature.com/articles/s41586-018-0077-3

Manuela Zingl | idw - Informationsdienst Wissenschaft

Weitere Berichte zu: Andockstellen Arrestin Biophysik GPCR Kommunikation Rezeptor Signalübermittlung Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Der „TRiC” bei der Aktinfaltung
10.08.2018 | Max-Planck-Institut für Biochemie

nachricht Harte Zeiten in der Savanne? Die Nahrung von Schimpansen ist zäher als bisher gedacht
10.08.2018 | Max-Planck-Institut für evolutionäre Anthropologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Arctic Ocean 2018 - Forscher untersuchen Wolken und Meereis in der Arktis

"Arctic Ocean 2018": So heißt die diesjährige Forschungsexpedition des schwedischen Eisbrechers ODEN in der Arktis, an der auch ein Wissenschaftler der Universität Leipzig beteiligt ist. Noch bis zum 25. September wollen die etwa 40 Forscher an Bord vor allem das mikrobiologische Leben im Ozean und im Meereis untersuchen und wie es mit der Wolkenbildung in der Arktis zusammenhängt.

Während der Fahrt durch die Arktis, die Ende Juli gestartet ist, sollen im Rahmen der Kampagne MOCCHA 2018 (Microbiology-Ocean-Cloud-Coupling in the Hight...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: Ein molekularer Schalter bietet neue therapeutische Angriffspunkte gegen Krebs und Diabetes

Sind bestimmte Signalkaskaden im Körper fehlerhaft reguliert, können Krankheiten wie Krebs, Adipositas und Diabetes entstehen. Forscher vom Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin sowie von der Universität Genf haben nun einen Mechanismus entdeckt, der diese Signalkaskaden entscheidend beeinflusst und damit ein wichtiger Schlüssel zur zukünftigen Entwicklung von Therapien für diese Erkrankungen sein kann. Die Ergebnisse der Studie sind soeben im prestigeträchtigen Fachmagazin „Molecular Cell“ erschienen.

Zellwachstum und -differenzierung, aber auch die Freisetzung und Wirkung von Hormonen wie Insulin hängen wesentlich von Lipiden ab. Lipide sind kleine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

Herausforderung China – Wissenschaftler aus der ganzen Welt diskutieren miteinander auf UW/H-Tagung

03.08.2018 | Veranstaltungen

Pharmazeuten treffen sich zur internationalen Konferenz „BioBarriers 2018“ in Saarbrücken

02.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

BayernCloud - Allgäu wird Modellregion für digitale Dienste im Tourismus

10.08.2018 | Informationstechnologie

Der „TRiC” bei der Aktinfaltung

10.08.2018 | Biowissenschaften Chemie

Harte Zeiten in der Savanne? Die Nahrung von Schimpansen ist zäher als bisher gedacht

10.08.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics