Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Keine Toleranz für Tumoren

08.07.2015

Sterbende Zellen können das Immunsystem unterdrücken. Sie halten damit Immunzellen von unerwünschten Abwehrreaktionen gegen körpereigene Strukturen ab. In der Krebstherapie wirkt sich diese immunologische Toleranz jedoch negativ aus und unterdrückt den Kampf gegen den Tumor. Immunologen am Deutschen Krebsforschungszentrum (DKFZ) in Heidelberg fanden nun erstmals einen Auslöser für diese Toleranz. Spezielle intrazelluläre Proteine, sogenannte Annexine, werden in sterbenden Zellen an die Oberfläche transportiert und verhindern die Immunreaktion.

Täglich sterben im menschlichen Körper Milliarden von Zellen. Dies geschieht durch einen streng regulierten Prozess, der als Apoptose bezeichnet wird. Die sterbenden Zellen unterdrücken dabei aktiv das Immunsystem, damit sich dieses nicht gegen dabei freigesetzte Proteine des eigenen Körpers richtet. Wie dies geschieht, fanden nun Wissenschaftler am Deutschen Krebsforschungszentrum in Heidelberg heraus.


Fresszellen in Kontakt mit blau gefärbten apoptotischen Zellen

Quelle: Heiko Weyd/DKFZ

Ein Team um Professor Dr. Peter Krammer, Leiter der Abteilung „Immungenetik“, konnte erstmals nachweisen, dass apoptotische Zellen bestimmte Proteine aus der Gruppe der Annexine auf ihrer Oberfläche präsentieren und dadurch Immunzellen bremsen.

„Annexine sind eine bisher wenig erforschte Gruppe von Proteinen“, erklärt Peter Krammer. „Sie befinden sich normalerweise innerhalb der Zelle. In sterbenden Zellen werden Annexine jedoch auf die Oberfläche transportiert.“ Dieser Vorgang ermöglicht es den Annexinen, mit bestimmten Zellen des Immunsystems, den sogenannten Dendritischen Zellen, in Kontakt zu treten.

Dendritische Zellen durchstreifen den Körper auf der Suche nach ungewöhnlichen oder fremden Strukturen, die beispielsweise von Viren oder Bakterien stammen. Sie nehmen die Krankheitserreger oder Teile davon auf und lösen Alarm aus, um andere Immunzellen zu aktivieren. Darüber hinaus beseitigen Dendritische Zellen körpereigene Zellen, die durch Apoptose sterben.

„Apoptotische Zellen locken Dendritische Fresszellen aktiv an und werden von diesen gefressen“, erläutert Krammer. „Die Annexine hemmen dann die Aktivität der Fresszellen und sorgen dafür, dass das Immunsystem die Bestandteile der apoptotischen Zellen toleriert.“

Die Dendritischen Zellen wandern daraufhin in die naheliegenden Lymphknoten und präsentieren dort anderen Immunzellen die Proteine, die sie aus den sterbenden Zellen aufgenommen haben. Weitere Reaktionen des Immunsystems bleiben daraufhin aus und die Immunzellen lernen, die apoptotischen Zellen und deren Proteine zu tolerieren. Dieser Vorgang hält Zellen, die sich gegen körpereigene Strukturen richten können, in Schach und verhindern so eine Autoimmunreaktion.

Die Toleranz des Immunsystems gegenüber apoptotischen Zellen kann sich allerdings im Kampf gegen Krebs negativ auswirken. Auch sterbende Tumorzellen präsentieren Annexine auf ihrer Oberfläche und sind damit in der Lage, die anti-Tumorantwort zu unterdrücken und so das Tumorwachstum zu begünstigen. Die Wissenschaftler der Abteilung „Immungenetik“ haben somit einen neuen Kontrollpunkt des Immunsystems gefunden, einen sogenannten Immun-Checkpoint, an dem der Tumor die gegen ihn gerichtete Abwehr ausbremsen kann.

Er nutzt in diesem Fall die Fähigkeit der Dendritischen Zellen, in anderen Immunzellen Toleranz auszulösen. Das Wissen über diesen Mechanismus soll nun helfen, gezielte Therapeutika zu entwickeln, die die Annexine unterdrücken oder maskieren, um Immuntherapien und konventionelle Krebstherapien zu unterstützen. Auch Autoimmunerkrankungen, bei denen Immunzellen sich gegen das körpereigene Gewebe wenden, könnten Ärzte so langfristig besser in den Griff bekommen.

„Durch die Analyse mehrerer tausend Antikörper ist es gelungen, die Exposition von Annexinen auf der Oberfläche sterbender Zellen nachzuweisen“, berichtet Dr. Heiko Weyd, ebenfalls an der Studie beteiligt, über die Arbeit zur Immuntoleranz. „Jetzt wollen wir in weiteren Experimenten prüfen, ob das Annexin-Checkpoint System zukünftig für die Therapie von Autoimmunkrankheiten und Krebs im Menschen genutzt werden kann.“

Björn Linke, Lucie Abeler-Dörner, Veronika Jahndel, Alexandra Kurz, Andrea Mahr, Sandra Pfrang, Linda Linke, Peter H. Krammer, and Heiko Weyd: The Tolerogenic Function of Annexins on Apoptotic Cells Is Mediated by the Annexin Core Domain. The Journal of Immunology 2015, DOI: 10.4049/jimmunol.1401299


Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 3.000 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Über 1000 Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Methoden, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Die Mitarbeiterinnen und Mitarbeiter des Krebsinformationsdienstes (KID) klären Betroffene, Angehörige und interessierte Bürger über die Volkskrankheit Krebs auf. Gemeinsam mit dem Universitätsklinikum Heidelberg hat das DKFZ das Nationale Centrum für Tumorerkrankungen (NCT) Heidelberg eingerichtet, in dem vielversprechende Ansätze aus der Krebsforschung in die Klinik übertragen werden. Im Deutschen Konsortium für Translationale Krebsforschung (DKTK), einem der sechs Deutschen Zentren für Gesundheitsforschung, unterhält das DKFZ Translationszentren an sieben universitären Partnerstandorten. Die Verbindung von exzellenter Hochschulmedizin mit der hochkarätigen Forschung eines Helmholtz-Zentrums ist ein wichtiger Beitrag, um die Chancen von Krebspatienten zu verbessern. Das DKFZ wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft deutscher Forschungszentren.

Ansprechpartner für die Presse:

Dr. Stefanie Seltmann
Leiterin Presse- und Öffentlichkeitsarbeit
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 280
69120 Heidelberg
T: +49 6221 42-2854
F: +49 6221 42-2968
E-Mail: S.Seltmann@dkfz.de

Dr. Sibylle Kohlstädt
Presse- und Öffentlichkeitsarbeit
Deutsches Krebsforschungszentrum
Im Neuenheimer Feld 280
69120 Heidelberg
T: +49 6221 42 2843
F: +49 6221 42 2968
E-Mail: S.Kohlstaedt@dkfz.de

E-Mail: presse@dkfz.de

www.dkfz.de

Dr. Stefanie Seltmann | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues aus der Schaltzentrale
18.07.2018 | Karl-Franzens-Universität Graz

nachricht Chemische Waffe durch laterale Gen-Übertragung schützt Wollkäfer gegen schädliche Pilze
18.07.2018 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Latest News

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics