Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ionische Flüssigkeiten 4.0

15.03.2019

Chemiker der TU Dresden präsentieren im renommierten Fachjournal „Chemistry - A European Journal“ eine neue Klasse von maßgeschneiderten Aryl‐Alkyl‐substituierten ionischen Flüssigkeiten (TAAILs).

TAAILs - Maßgeschneiderte Designerstoffe: es klingt wie eine hippe neue Modemarke, kommt aber in Wirklichkeit aus dem Chemielabor. Maßgeschneiderte Aryl‐Alkyl‐substituierte ionische Flüssigkeiten (engl. tunable aryl alkyl ionic liquids, TAAILs) sind die vierte Generation ionischer Flüssigkeiten, bei denen die physikalischen Eigenschaften zu einem großen Teil gemäß den benötigten technischen Anforderungen angepasst werden können.


Kristallstruktur einer Palladium-TAAIL

Johannes Söllner


Herstellung ionischer Flüssigkeiten

Piermaria Pinter

Hinter dem Begriff „ionische Flüssigkeiten“ verstecken sich Salze, die bei Temperaturen unter 100° Celsius flüssig sind. Sie bestehen aus organischen Kationen und anorganischen oder organischen Anionen und werden aufgrund ihrer besonderen Eigenschaften vielfältig eingesetzt, unter anderem als Lösungsmittel oder Elektrolyte.

TAAILs bestehen aus einem Imidazolium-Kation, welches auf einer Seite mit einem Arylring und auf der anderen Seite mit einer Alkylkette ausgestattet ist, sowie einem schwach koordinierenden Anion. Die einzelnen Bestandteile können beliebig variiert werden. Chemiker Prof. Dr. Thomas Strassner von der Professur für Physikalische Organische Chemie der TU Dresden arbeitet zusammen mit seinem Team seit über 10 Jahren an der Zusammensetzung von TAAILs. Nun ist ihnen ein entscheidender Durchbruch gelungen:

„Wir konnten erstmals eine Reihe von TAAILs mit Palladium-haltigen Anionen synthetisieren. Viele dieser metallhaltigen Salze sind bei Raumtemperatur flüssig. Die entstandene Kombination aus physikalischen Eigenschaften der ionischen Flüssigkeiten gepaart mit der katalytischen Aktivität der Palladium-Bestandteile ist sehr vielversprechend. Da ionische Flüssigkeiten nicht verdampfen können, werden sie gerne als umweltfreundliche Lösungsmittel bezeichnet. Unsere Palladium-TAAILs sind als Katalysator für organische Kupplungsreaktionen geeignet. Das Praktische dabei: Der TAAIL-Katalysator ist gleichzeitig Lösungsmittel“, beschreibt Prof. Strassner die Vorteile der neuen Stoffe.

Um die molekularen Eigenschaften der Salze zu bestimmen, wendeten die Wissenschaftler verschiedene Analysemethoden, darunter beispielsweise Röntgenbeugung im Festkörperzustand, an.

Prof. Strassner und sein Team sind fasziniert von den zahlreichen Möglichkeiten, die diese neue Stoffklasse bietet. Sie wollen nun die weiteren Anwendungsmöglichkeiten ihrer TAAILs näher erforschen.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Thomas Strassner
Professur für Physikalische Organische Chemie
Tel.: 0351 463-38571
E-Mail: thomas.strassner@chemie.tu-dresden.de

Originalpublikation:

„Tailored Palladate Tunable Aryl Alkyl Ionic Liquids (TAAILs)“, Felix Schroeter, Johannes Soellner, Thomas Strassner, Chem. Eur. J. 16 January 2019 https://doi.org/10.1002/chem.201804431

Kim-Astrid Magister | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.tu-dresden.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Diagnostik für alle
14.10.2019 | Max-Planck-Institut für Kolloid- und Grenzflächenforschung

nachricht Inaktiver Rezeptor macht Krebs-Immuntherapien wirkungslos
14.10.2019 | Technische Universität München

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuer Werkstoff für den Bootsbau

Um die Entwicklung eines Leichtbaukonzepts für Sportboote und Yachten geht es in einem Forschungsprojekt der Technischen Hochschule Mittelhessen. Prof. Dr. Stephan Marzi vom Gießener Institut für Mechanik und Materialforschung arbeitet dabei mit dem Bootsbauer Krake Catamarane aus dem thüringischen Apolda zusammen. Internationale Kooperationspartner sind Prof. Anders Biel von der schwedischen Universität Karlstad und die Firma Lamera aus Göteborg. Den Projektbeitrag der THM fördert das Bundesministerium für Wirtschaft und Energie im Rahmen des Zentralen Innovationsprogramms Mittelstand mit 190.000 Euro.

Im modernen Bootsbau verwenden die Hersteller als Grundmaterial vorwiegend Duroplasten wie zum Beispiel glasfaserverstärkten Kunststoff. Das Material ist...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

Im Focus: Ultraschneller Blick in die Photochemie der Atmosphäre

Physiker des Labors für Attosekundenphysik haben erkundet, was mit Molekülen an den Oberflächen von nanoskopischen Aerosolen passiert, wenn sie unter Lichteinfluss geraten.

Kleinste Phänomene im Nanokosmos bestimmen unser Leben. Vieles, was wir in der Natur beobachten, beginnt als elementare Reaktion von Atomen oder Molekülen auf...

Im Focus: Wie entstehen die stärksten Magnete des Universums?

Wie kommt es, dass manche Neutronensterne zu den stärksten Magneten im Universum werden? Eine mögliche Antwort auf die Frage nach der Entstehung dieser sogenannten Magnetare hat ein deutsch-britisches Team von Astrophysikern gefunden. Die Forscher aus Heidelberg, Garching und Oxford konnten mit umfangreichen Computersimulationen nachvollziehen, wie sich bei der Verschmelzung von zwei Sternen starke Magnetfelder bilden. Explodieren solche Sterne in einer Supernova, könnten daraus Magnetare entstehen.

Wie entstehen die stärksten Magnete des Universums?

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2019

14.10.2019 | Veranstaltungen

10. Weltkonferenz der Ecosystem Services Partnership an der Leibniz Universität Hannover

14.10.2019 | Veranstaltungen

Bildung.Regional.Digital: Tagung bietet Rüstzeug für den digitalen Unterricht von heute und morgen

10.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Technologiemodul senkt Ausschussrate von Mikrolinsen auf ein Minimum

14.10.2019 | Informationstechnologie

Diagnostik für alle

14.10.2019 | Biowissenschaften Chemie

Bayreuther Forscher entdecken stabiles hochenergetisches Material

14.10.2019 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics