Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie Immunzellen Bakterien zerstören: Neues Messverfahren kann medizinische Diagnostik unterstützen

19.04.2013
Immunzellen haben die Aufgabe, den Organismus gegen Bakterien und krankheitserregende Partikel zu schützen. Sie tun dies, indem sie sich den Fremdkörper einverleiben und ihn dadurch unschädlich machen.

Diesen Vorgang, die sogenannte Phagozytose, haben Wissenschaftler um Prof. Dr. Holger Kress von der Universität Bayreuth und Prof. Dr. Menno Prins von der TU Eindhoven jetzt unter physikalischen Aspekten genauer untersucht. Sie haben dafür ein Verfahren entwickelt, mit dem der Verlauf dieser Einverleibung und die daran beteiligten mechanischen Kräfte präzise gemessen werden können. Das Verfahren lässt sich möglicherweise bei der Diagnose erkrankter Zellen einsetzen.

Neue Forschungsidee:
Magnetische Partikel mit Leuchtpunkten ersetzen die Bakterien
Wenn eine Immunzelle auf einen schädlichen Fremdkörper trifft, beginnt sie ihn langsam zu umschließen. Es bildet sich in der Zelle eine schalenförmige Vertiefung aus, in die das Bakterium aufgenommen wird. Durch gezielte Verformungen der Zellmembran wird das Bakterium immer tiefer in die Zelle hineingezogen, bis es völlig von ihr umschlossen ist. Diesen Prozess, der nur wenige Minuten dauert, hat das deutsch-niederländische Team im Labor künstlich nachgeahmt. Eine gemeinsam entwickelte Forschungsidee wurde dabei von dem Doktoranden Matthias Irmscher (Eindhoven) umgesetzt, der an der Planung der Experimente wesentlich mitgewirkt hat.

Bei den Experimenten werden magnetische Partikel mit einem Durchmesser von nur 4,5 Mikrometern verwendet. Sie erhalten eine Beschichtung mit Antikörpern, so dass sie von Immunzellen als schädliche Fremdkörper identifiziert und angegriffen werden. Aufgrund ihrer magnetischen Eigenschaften haben die Partikel den entscheidenden Vorteil, dass sich ihre Bewegungen durch Magnetfelder steuern lassen. Diesen Effekt nutzen die Forscher in Bayreuth und Eindhoven aus. Sobald eine Immunzelle eine schalenförmige Vertiefung ausgebildet und einen Fremdkörper darin aufgenommen hat, versetzen sie dieses Partikel mithilfe von rotierenden Magnetfeldern in Rotationsbewegungen.

Aber wie können die Forscher die künstlich erzeugten Drehbewegungen der Fremdkörper beobachten und messen? Dies ist durch einen weiteren Kunstgriff möglich. Auf den Partikeln platzieren sie fluoreszierende Teilchen, die einen Durchmesser von nur 0,2 Mikrometern haben. Mithilfe dieser leuchtenden Markierungen ist es möglich, die Geschwindigkeit und die Richtung der Partikelbewegungen mit hoher Genauigkeit zu beobachten und zu messen.

Rückschlüsse auf die Immunzelle:
Membran und Zellskelett ändern sich während der Phagozytose

Aufgrund dieser Messergebnisse können die Wissenschaftler Rückschlüsse auf Eigenschaften und Verhaltensweisen der Immunzelle ziehen. Von besonderem Interesse sind dabei die Zellmembran, welche die Oberfläche der schalenförmigen Vertiefung bildet, und das Zellskelett, das sich unterhalb der Membran befindet. Denn von der Festigkeit der Membran und des Zellskeletts hängt der mechanische Widerstand ab, auf den Bakterien und andere Krankheitsträger treffen. Die Forscher in Bayreuth und Eindhoven haben jetzt erstmals gemessen, dass sich dieser Widerstand erheblich ändert, während die Immunzelle sich den Fremdkörper einverleibt. Es ist ihnen außerdem gelungen, diese Schwankungen der mechanischen Zelleigenschaften mit hoher Präzision physikalisch zu beschreiben.

Unterschiede zwischen gesunden und kranken Zellen:
Mögliche Anwendungen in der medizinischen Diagnostik

Das neue Messverfahren ist nicht nur für die Grundlagenforschung interessant. Es könnte in Zukunft auch moderne Diagnosemethoden in der Medizin unterstützen. Denn durch die Messungen lässt sich mit hoher Genauigkeit ermitteln, wie die Membran und das Zellskelett gesunder Immunzellen normalerweise reagieren, wenn sie Bakterien und andere krankheitserregende Partikel unschädlich machen. Auf dieser Grundlage können auch Abweichungen präzise registriert werden.

"Wenn Immunzellen nicht das mechanische Standardverhalten zeigen, das bei gesunden Zellen ermittelt worden ist, kann das auf krankhafte Vorgänge in der Immunzelle hinweisen", erklärt Prof. Dr. Holger Kress. "Denn erkrankte Zellen – beispielsweise im Gewebe von Tumoren – weisen recht häufig auch Änderungen in ihren mechanischen Eigenschaften auf. Dies gilt nicht nur für Immunzellen, sondern auch für zahlreiche andere Zellarten. Deshalb sind wir durchaus optimistisch, dass unser neues Verfahren nicht allein die Aufklärung der Phagozytose voranbringt, sondern auch dazu beitragen kann, medizinische Diagnosemöglichkeiten zu erweitern."

Veröffentlichung:

Matthias Irmscher, Arthur M. de Jong, Holger Kress and Menno W. J. Prins,
A method for time-resolved measurements of the mechanics of phagocytic cups
in: Journal of the Royal Society Interface, 6 May 2013 vol. 10 no. 82
DOI: 10.1098/rsif.2012.1048

Ansprechpartner:

Prof. Dr. Holger Kress
Lehrstuhl Experimentalphysik I
Universität Bayreuth
D-95440 Bayreuth
Tel.: +49 (0)921 55 2505
E-Mail: holger.kress@uni-bayreuth.de

Christian Wißler | Universität Bayreuth
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie breitet sich der Kalikokrebs aus?
25.06.2018 | Pädagogische Hochschule Karlsruhe

nachricht Brücken bauen mit Wassermolekülen
25.06.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wendelstein 7-X erreicht Weltrekord

Stellarator-Rekord für Fusionsprodukt / Erste Bestätigung für Optimierung

Höhere Temperaturen und Dichten des Plasmas, längere Pulse und den weltweiten Stellarator-Rekord für das Fusionsprodukt hat Wendelstein 7-X in der...

Im Focus: Schnell und innovativ: Jülicher Superrechner ist eine Neuentwicklung aus Europa

Bei der Entwicklung innovativer Superrechner-Architekturen ist Europa dabei, die Führung zu übernehmen. Leuchtendes Beispiel hierfür ist der neue Höchstleistungsrechner, der in diesen Tagen am Jülicher Supercomputing Centre (JSC) an den Start geht. JUWELS ist ein Meilenstein hin zu einer neuen Generation von hochflexiblen modularen Supercomputern, die auf ein erweitertes Aufgabenspektrum abzielen – von Big-Data-Anwendungen bis hin zu rechenaufwändigen Simulationen. Allein mit seinem ersten Modul qualifizierte er sich als Nummer 1 der deutschen Rechner für die TOP500-Liste der schnellsten Computer der Welt, die heute erschienen ist.

Das System wird im Rahmen des von Bund und Sitzländern getragenen Gauß Centre for Supercomputing finanziert und eingesetzt.

Im Focus: Superconducting vortices quantize ordinary metal

Russian researchers together with their French colleagues discovered that a genuine feature of superconductors -- quantum Abrikosov vortices of supercurrent -- can also exist in an ordinary nonsuperconducting metal put into contact with a superconductor. The observation of these vortices provides direct evidence of induced quantum coherence. The pioneering experimental observation was supported by a first-ever numerical model that describes the induced vortices in finer detail.

These fundamental results, published in the journal Nature Communications, enable a better understanding and description of the processes occurring at the...

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Neueste Entwicklungen in Forschung und Technik

25.06.2018 | Veranstaltungen

Wheat Initiative holt Weizenforscher aus aller Welt an einen Tisch

25.06.2018 | Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Wendelstein 7-X erreicht Weltrekord

25.06.2018 | Physik Astronomie

Schnell und innovativ: Jülicher Superrechner ist eine Neuentwicklung aus Europa

25.06.2018 | Informationstechnologie

Leuchtfeuer in der Produktion

25.06.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics