Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Haifisch-Antikörper inspirieren Optimierung menschlicher Antikörper: Lernen vom Haifisch

15.05.2014

Gentechnisch hergestellte Antikörper werden heutzutage erfolgreich in Krebsdiagnostik und -therapie eingesetzt. Auch gegen Alzheimer oder Multiple Sklerose werden bereits therapeutische Antikörper entwickelt.

Ein wichtiges Kriterium bei der Konstruktion geeigneter Antikörperfragmente ist ihre Stabilität. Beim Vergleich der Antikörper des evolutionsbiologisch sehr alten Haifischs mit denen des Menschen fand ein Wissenschaftlerteam der Technischen Universität München (TUM) und des Helmholtz Zentrums München Stabilisierungsmechanismen, die sich auch für maßgeschneiderte Antikörper zum Einsatz beim Menschen nutzen lassen.


Strukturelles Modell des IgNAR Hai-Antikörpers

Bild: Janosch Hennig, TUM/Helmholtz Zentrum

Maßgeschneiderte Antikörper gelten als aussichtsreiche Mittel gegen eine Vielzahl schwerer Krankheiten. Da sie präzise bestimmte Strukturen auf der Oberfläche von Viren, Bakterien oder Krebszellen erkennen können, werden sie bereits erfolgreich in Krebsdiagnostik und -therapie sowie gegen eine Vielzahl anderer Krankheiten eingesetzt. Bei allen Schritten, von der Produktion über die Lagerung bis hin zum therapeutischen Einsatz, ist die Stabilität der empfindlichen Antikörper ein entscheidender Faktor.

Neue Ansätze zur Stabilisierung von Antikörpern erhoffte sich ein Team um Dr. Matthias J. Feige sowie die Professoren Linda Hendershot vom St. Jude Children’s Research Hospital in Memphis (Tennessee, USA), Michael Sattler (Inhaber des Lehrstuhls für biomolekulare NMR Spektroskopie an der TU München und Institut für Strukturbiologie des Helmholtz Zentrums München), Michael Groll (Inhaber des Lehrstuhls für Biochemie an der TU München) und Johannes Buchner (Inhaber des Lehrstuhls für Biotechnologie an der TU München) vom Vergleich von Säugetier-Antikörpern mit denen von Haifischen.

Haifische gibt es bereits seit 500 Millionen Jahren. Sie gehören entwicklungsbiologisch zu den ältesten Tieren, die über ein „modernes“ Immunsystem ähnlich dem des Menschen verfügen. Damit der Hai im Salzwasser überleben kann, enthält sein Blut große Mengen an Harnstoff. Dieser schützt den Hai zwar vor Wasserverlust, kann aber gleichzeitig auch empfindliche Proteinmoleküle wie die Antikörper destabilisieren.

„Menschliche Antikörper würden unter diesen Bedingungen zusammenbrechen. Hai-Antikörper müssen also strukturelle Eigenschaften besitzen, die sie besonders widerstandsfähig machen“, sagt Matthias J. Feige, Erstautor der Publikation. „Dieses Geheimnis wollten wir lüften.“

Für ihre Untersuchungen wählten sie den Haifisch-Antikörper IgNAR (Immunoglobulin New Antigen Receptor). Da es bisher kaum strukturelle Informationen über das Molekül gab und es sich nicht in Gänze kristallisieren ließ, entwickelten sie in detektivischer Puzzlearbeit ein Modell des Antikörpers.

Sie kristallisierten Teilstücke und ermittelten deren atomaren Aufbau mittels Röntgenstrukturanalyse, verglichen Teilabschnitte mit bereits bekannten Strukturen anderer Immunglobuline. Die Strukturen anderer Teile des Antikörpers wurden mittels Kernmagnetresonanz-Spektroskopie gelöst. Wieder und wieder verglichen sie die ermittelten Strukturen und räumlichen Abstände mit den Ergebnissen von Röntgenstreumessungen an natürlichen Hai-Antikörpern und konnten so schließlich ein vollständiges Modell des Antikörpers aufbauen.

Die genauere Betrachtung der Struktur dieses Proteins zeigte, dass sich die für Antikörper typische Ig-Faltung offenbar schon vor mehr als 500 Millionen Jahren entwickelt hat, da sie auch beim Haifisch schon zu finden ist. Auch den Grund für die hohe Stabilität der Haifisch-Antikörper konnten die Forscher aufklären: Sie resultiert aus einer zusätzlichen Salzbrücke zwischen strukturell wichtigen Aminosäureketten sowie einem besonders großen unpolaren Kern der Ig-Faltung im Hai-Antikörper.

Den Forschern gelang es, beide Stabilisierungsprinzipen in menschliche Antikörper einzubauen. Tatsächlich führte die Kombination beider Prinzipien zu deutlich stabileren menschlichen Antikörperfragmenten. Ihr Schmelzpunkt lag zehn Grad höher als der des ursprünglichen Moleküls.

Auch in Säugetierzellen, in denen therapeutische Antikörper normalerweise produziert werden, zeigte die höhere Stabilität positive Effekte: Die veränderten Antikörper wurden in deutlich größerer Menge produziert. In naher Zukunft, so hoffen die Forscher, werden diese Erkenntnisse dazu beitragen, verbesserte therapeutische und diagnostische Antikörper aufbauen zu können. Sie sollten sich einfacher herstellen und besser lagern lassen sowie im menschlichen Organismus länger aktiv bleiben um ihr ganzes therapeutisches Potential entfalten zu können.

Die Arbeiten wurden unterstützt mit Mitteln des National Institutes of Health (NIH), der Deutschen Forschungsgemeinschaft (DFG), des Exzellenzclusters Center for Integrated Protein Science Munich (CIPSM), der Deutschen Akademie der Naturforscher Leopoldina, des St. Jude Children’s Research Hospital, der Peter und Traudl Engelhorn Stiftung, der Studienstiftung des Deutschen Volkes, der European Molecular Biology Organization (EMBO), des Swedish Research Council sowie des Boehringer Ingelheim Fonds. NMR-Messungen wurden am Bayerischen NMR Zentrum (BNMRZ) durchgeführt. Röntgenstrukturdaten wurden an der Synchrotron-Strahlungsquelle des Paul Scherrer Instituts (Villigen, Schweiz) ermittelt.

Publikation:

The structural analysis of shark IgNAR antibodies reveals evolutionary principles of immunoglobulins
Matthias J. Feige, Melissa A. Graewert, Moritz Marcinowski, Janosch Hennig, Julia Behnke, David Ausländerb, Eva M. Herold, Jirka Peschek, Caitlin D. Castro, Martin Flajnik, Linda M. Hendershot, Michael Sattler, Michael Groll, and Johannes Buchner
PNAS, Early Edition, http://www.pnas.org/cgi/doi/10.1073/pnas.1321502111
(voraussichtlich online am 15. Mai 2014)

Kontakt:

Prof. Dr. Johannes Buchner
Technische Universität München
Fakultät für Chemie, Lehrstuhl für Biotechnologie
Lichtenbergstraße 4, 85748 Garching, Germany
Tel.: +49 89 289 13341 – E-Mail: Johannes.Buchner@tum.de
Internet: http://www.chemie.tu-muenchen.de/biotech/index.html

Dr. Ulrich Marsch | Technische Universität München
Weitere Informationen:
http://www.tum.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Biochemie-Absolvent der Universität Bayreuth hat Antigen für hochspezifischen Corona-Antikörpertest entwickelt
22.05.2020 | Universität Bayreuth

nachricht Wenn aus theoretischer Chemie Praxis wird
22.05.2020 | Technische Universität Dresden

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wenn aus theoretischer Chemie Praxis wird

Thomas Heine, Professor für Theoretische Chemie an der TU Dresden, hat 2019 zusammen mit seinem Team topologische 2D-Polymere vorhergesagt. Nur ein Jahr später konnten diese Materialien von einem italienischen Forscherteam synthetisiert und deren topologische Eigenschaften experimentell nachgewiesen werden. Für die renommierte Fachzeitschrift Nature Materials war das Anlass, Thomas Heine zu einem News and Views Artikel einzuladen, der in dieser Woche veröffentlicht wurde. Unter dem Titel "Making 2D Topological Polymers a reality" beschreibt Prof. Heine, wie aus seiner Theorie Praxis wurde.

Ultradünne Materialien sind als Bausteine für nanoelektronische Bauelemente der nächsten Generation äußerst interessant, da es viel einfacher ist, Schaltungen...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Mikroroboter rollt tief ins Innere des Körpers

Mit einem Leukozyten als Vorbild haben Wissenschaftler des Max-Planck-Instituts für Intelligente Systeme in Stuttgart einen Mikroroboter entwickelt, der in Größe, Form und Bewegungsfähigkeit einem weißen Blutkörperchen gleicht. In einem Labor simulierten sie dann ein Blutgefäß – und es gelang ihnen, den Mikroroller durch diese dynamische und dichte Umgebung zu steuern. Der Roboter hielt dem simulierten Blutfluss stand und brachte damit das Forschungsgebiet rund um die zielgenaue Medikamentenabgabe einen Schritt weiter: Es gibt keinen besseren Zugangsweg zu allen Geweben und Organen im menschlichen Körper als den Blutkreislauf.

Wissenschaftler des Max-Planck-Instituts für Intelligente Systeme (MPI-IS) in Stuttgart haben einen winzigen Mikroroboter entwickelt, der einem weißen...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

Im Focus: Schnüffel-Roboter als Katastrophenhelfer

Wo Menschenleben gefährdet sind, kommen künftig neuartige Roboter zum Einsatz, die an der TU Dresden entwickelt werden

Wissenschaftler an der TU Dresden arbeiten seit Juni 2019 an künstlichen Helfern, die in einem Katastrophengebiet Gefahren erkennen, beseitigen und somit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

Urban Transport Conference 2020 in digitaler Form

18.05.2020 | Veranstaltungen

Erfolgreiche Premiere für das »Electrochemical Cell Concepts Colloquium«

18.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Techniker Krankenkasse, EuPD Research und Handelsblatt starten Bewerbung für die Sonderpreise "Gesunde Hochschule" im Rahmen des Corporate Health Award 2020

22.05.2020 | Förderungen Preise

Werkstattbericht #1: Head Mounted Displays (HMDs) – Schwerpunktpositionen und Drehmomente

22.05.2020 | Informationstechnologie

Biochemie-Absolvent der Universität Bayreuth hat Antigen für hochspezifischen Corona-Antikörpertest entwickelt

22.05.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics