Gezielter Griff nach dem gesuchten Gen

Zielgerichteter Austausch von DNA-Abschnitten statt mühsamer Suche: Deutsche und chinesische Wissenschaftler haben eine Technik zur direkten Isolierung von Erbinformation aus komplexen Gemischen verschiedener Bakterienarten entwickelt.

Bestimmte Stoffe, die von Bakterien produziert werden und die beispielsweise als Antibiotika oder Chemotherapeutika medizinisch genutzt werden können, lassen sich mit Hilfe der neuen Methode leichter im Labor herstellen. Die Forscher beschreiben diese neu entwickelte Technik jetzt in der Fachzeitschrift Nature Biotechnology.

Die Methode ist eine gemeinsame Entwicklung von Wissenschaftlern des Helmholtz-Instituts für Pharmazeutische Forschung Saarland (HIPS) – einer Außenstelle des Helmholtz-Zentrums für Infektionsforschung (HZI) – sowie des Biotechnologischen Zentrums der Technischen Universität Dresden, des College of Life Science in Hunan/China und der Firma Gene Bridges in Heidelberg. Beteiligt waren die Arbeitsgruppen von Prof. Rolf Müller, Prof. Francis Stewart und Dr. Youming Zhang.

Neben dem primären Stoffwechsel, der beispielsweise die Grundlagen des Energiehaushaltes und der Vermehrung beinhaltet, verfügen Bakterien noch über eine Vielzahl sekundärer Stoffwechselwege. Die Produkte dieser Stoffwechselwege brauchen die Bakterien nicht unbedingt zum Überleben, aber sie dienen ihnen zur besseren Anpassung an ihren Lebensraum. Viele dieser sekundären Stoffwechselprodukte sind pharmazeutisch nutzbare Substanzen. Sie lassen sich zum Beispiel als Antibiotika oder Chemotherapeutika einsetzen. Zur Charakterisierung und Untersuchung auf eine mögliche medizinische Wirksamkeit müssen Forscher zunächst größere Mengen dieser Stoffe herstellen und isolieren. Ihre Gewinnung aus den Bakterien ist aber in der Regel schwierig, weil die genauen Bedingungen, unter denen die Sekundärstoffe produziert werden, meist unbekannt sind. Daher isolieren die Wissenschaftler häufig die betreffenden Bakterien-Gene, welche für die Produktion der gesuchten Substanz zuständig sind, und übertragen diese in einen leicht kultivierbaren Bakterienstamm, der die Substanz dann im Erfolgsfall herstellt.

Bislang nutzten Wissenschaftler hierzu sogenannte DNA-Bibliotheken, die das gesamte Erbgut eines Organismus in Bruchstücken enthalten. Nach Erstellen der Bibliothek mussten die Forscher sie nach dem Kandidatengen durchsuchen. War das Gen in vollständiger Form vorhanden, mussten sie es in ein spezielles Transfer-DNA-Molekül einbauen und in die Zielbakterien übertragen. Für Naturstoffe ergibt sich ein zusätzliches Hindernis: „Häufig sind für die Herstellung der Sekundärstoffe recht viele Gene notwendig, sogenannte Gencluster. Deren Isolierung machte große Schwierigkeiten“, erklärt Rolf Müller, Geschäftsführender Direktor des HIPS und Leiter der Abteilung Mikrobielle Naturstoffe.

In Zeiten der Hochdurchsatzsequenzierung sind die vollständigen Erbgutsequenzen vieler Bakterien bereits bekannt – und damit theoretisch auch tausende Stoffwechselwege für Sekundärstoffe. Durch die nun beschriebene Methode der sogenannten direkten DNA-Klonierung lassen sich die Gene für die Sekundärstoffbildung gezielt isolieren und weiterverarbeiten. Der langwierige Umweg über eine DNA-Bibliothek entfällt.

Die beteiligten Wissenschaftler Xiaoying Bian vom HIPS und Jun Fu vom Biotechnologischen Zentrum der Technischen Universität Dresden sowie ihre Forscher-Kollegen verbesserten dazu die patentierte Technik der homologen Rekombination: Bestimmte Enzyme können dazu genutzt werden, einen Gen-Abschnitt gegen einen anderen, ähnlich aufgebauten Abschnitt auszutauschen. Ist die Abfolge der Bausteine am Anfang und Ende eines näher zu untersuchenden Gens bekannt, kann – vereinfacht gesagt – ein ähnlich aufgebauter DNA-Abschnitt konstruiert und enzymatisch ausgetauscht werden. Diese Methode ist im Prinzip nicht neu. Allerdings waren die bislang verwendeten Enzyme Red-alpha und Red-beta nicht effektiv genug, um diesen Ansatz für die Isolierung großer DNA-Abschnitte und die anschließende Herstellung von Naturstoffen im Labor zu nutzen. Die Forscher haben jetzt entdeckt, dass sich bestimmte Varianten der beiden Enzyme RecE und RecT hierfür weitaus besser eignen als Red-alpha und Red-beta.

„Die verbesserte direkte Klonierung erleichtert und verkürzt es ungemein, interessante Sekundärstoffe zu isolieren und zu charakterisieren“, sagt Xiaoying Bian, einer der Erstautoren der Studie vom HIPS. „Der große Aufwand, eine DNA-Bibliothek zu erstellen und zu durchsuchen, entfällt jetzt.“ HIPS-Direktor Rolf Müller ergänzt: „Weil viele krankheitserregende Bakterien mittlerweile Resistenzen gegen die gängigen Antibiotika entwickelt haben, ist die Entdeckung von neuen Substanzen im Kampf gegen Infektionen von enormer Bedeutung. Der von uns genutzte Ansatz ermöglicht es, mit Hilfe der mittlerweile von vielen Mikroorganismen verfügbaren Genomsequenzen zielstrebig nach neuen Substanzen zu suchen.“

Mit der vereinfachten Methode haben die Forscher bereits mehrere Gencluster aus dem Leuchtbakterium Photorhabdus luminescens auf direktem Wege in Escherichia coli-Bakterien transferiert. Dabei identifizierten sie die beiden bisher unbekannten Sekundärstoffe Luminmycin A und Luminmide A/B.

Obwohl die jetzt veröffentlichte Studie zunächst nur die Möglichkeiten der Methode veranschaulicht, macht sie auch Hoffnung auf neue, als Antibiotika nutzbare Naturstoffe und damit auf Fortschritte bei der Bekämpfung von Infektionskrankheiten.

Originalpublikation: Jun Fu, Xiaoying Bian, Shengbaio Hu, Hailong Wang, Fan Huang, Philipp M Seibert, Alberto Plaza, Liqiu Xia, Rolf Müller, A Francis Stewart & Youming Zhang (2012) Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning and bioprospecting, Nature Biotechnology, DOI: 10.1038/nbt2183

Das Helmholtz-Zentrum für Infektionsforschung:
Am Helmholtz-Zentrum für Infektionsforschung (HZI) untersuchen Wissenschaftler die Mechanismen von Infektionen und ihrer Abwehr. Was Bakterien oder Viren zu Krankheitserregern macht: Das zu verstehen soll den Schlüssel zur Entwicklung neuer Medikamente und Impfstoffe liefern.
www.helmholtz-hzi.de

Das Helmholtz-Institut für Pharmazeutische Forschung Saarland
Das Helmholtz-Institut für Pharmazeutische Forschung Saarland (HIPS) ist eine Außenstelle des Helmholtz- Zentrums für Infektionsforschung (HZI) in Braunschweig und wurde gemeinsam mit der Universität des Saarlandes im Jahr 2009 gegründet. Wo kommen neue nachhaltige Wirkstoffe gegen weit verbreitete Infektionen her, wie kann man diese für die Anwendung am Menschen optimieren und wie werden sie am besten durch den Körper zum Wirkort transportiert? Auf diese Fragen suchen die Forscher am HIPS mit modernsten Methoden der pharmazeutischen Wissenschaften Antworten.
www.helmholtz-hzi.de/HIPS

Ansprechpartner: Manfred Braun/HZI, 0531/6181-1401; presse@helmholtz-hzi.de

Media Contact

Manfred Braun Helmholz-Zentrum

Weitere Informationen:

http://www.helmholtz-hzi.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Diamantstaub leuchtet hell in Magnetresonanztomographie

Mögliche Alternative zum weit verbreiteten Kontrastmittel Gadolinium. Eine unerwartete Entdeckung machte eine Wissenschaftlerin des Max-Planck-Instituts für Intelligente Systeme in Stuttgart: Nanometerkleine Diamantpartikel, die eigentlich für einen ganz anderen Zweck bestimmt…

Neue Spule für 7-Tesla MRT | Kopf und Hals gleichzeitig darstellen

Die Magnetresonanztomographie (MRT) ermöglicht detaillierte Einblicke in den Körper. Vor allem die Ultrahochfeld-Bildgebung mit Magnetfeldstärken von 7 Tesla und höher macht feinste anatomische Strukturen und funktionelle Prozesse sichtbar. Doch alleine…

Hybrid-Energiespeichersystem für moderne Energienetze

Projekt HyFlow: Leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem für moderne Energienetze. In drei Jahren Forschungsarbeit hat das Konsortium des EU-Projekts HyFlow ein extrem leistungsfähiges, nachhaltiges und kostengünstiges Hybrid-Energiespeichersystem entwickelt, das einen…

Partner & Förderer