Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie sich Gewebe bewegt

12.10.2012
Forscher in Dresden und Wien erklären einen essentiellen entwicklungsbiologischen Prozess

Zebrafische laichen Eier ab, aus jedem einzelnen entwickelt sich in nur fünf Tagen ein fertiger Fisch. Ein wichtiger Schritt während dieser Entwicklung ist die so genannte Gastrulation:

Bei dieser Wachstumsbewegung stülpt sich das entstehende Gewebe über das nährende Dotter – wie eine Mütze, die über den Kopf gestülpt wird. Bisher erklärte man sich die auslösende Kraft für diese komplexe Gewebebewegung damit, dass die Mütze sich an ihrer Krampe zusammenzieht.

Forscher aus Dresden und Wien haben nun gezeigt, dass es etwas komplizierter abläuft: Ein Ring aus den Proteinen Aktin und Myosin zieht sich zwar tatsächlich rundum am unteren Ende des Gewebes zusammen, gleichzeitig sorgen Aktin und Myosin aber auch dafür, dass Material von der Unterseite des Dottersacks in den Ring strömt. Die Kombination aus diesen beiden Mechanismen lässt die Zellschicht nach unten wandern. „Wir haben also dem bisherigen Erklärungsmodell eine weitere Dimension hinzugefügt“, so Stephan Grill, einer der beiden Hauptautoren des Artikels, der die Ergebnisse zusammenfasst.

Experimente haben gezeigt, dass das alleinige Einschnüren der Gewebeschicht nicht ausreicht, um das Gewebe über die Dotterkugel zu stülpen. Der Materialstrom vom unteren Pol hingegen kann die Wachstumsbewegung auch alleine auslösen. Die Erkenntnisse haben weitreichende Bedeutung, wie Stephan Grill erklärt: „Ringgebilde aus Aktin und Myosin, die sich zusammenziehen, sind auch in andere Prozesse involviert, etwa in Wundheilung oder Zellteilung.“

Die Arbeiten kombinieren biologische Experimente und physikalische Modelle. Angeführt wurde das deutsch-österreichische Team gemeinsam von Stephan Grill, der an den beiden Dresdner Max-Planck-Instituten für Molekulare Zellbiologie und Genetik sowie für Physik Komplexer Systeme arbeitet, und von Carl-Philipp Heisenberg, der 2010 von Dresden weiterzog in die Nähe von Wien und nun am Institute of Science and Technology Austria tätig ist. Die Ergebnisse veröffentlichten sie in der Zeitschrift Science.

Originalveröffentlichung:
Martin Behrndt, Guillaume Salbreux, Pedro Campinho, Robert Hauschild, Felix Oswald, Julia Rönsch,
Stephan Grill and Carl‐Philipp Heisenberg:
Forces driving epithelial spreading in zebrafish gastrulation
Science, 12. Oktober 2012
weitere Informationen:
Stephan Grill
Max-Planck-Institut für
Molekulare Zellbiologie und Genetik
Pfotenhauerstrasse 108
D – 01307-Dresden
Tel. +49 (351) 210 2590
eMail: grill@mpi-cbg.de
Carl-Philipp Heisenberg
Institute of Science and Technology Austria (IST Austria)
Am Campus 1
A – 3400 Klosterneuburg

Tel. +43 (0)2243 9000-3901
eMail: heisenberg@ist.ac.at

Florian Frisch | Max-Planck-Institute
Weitere Informationen:
http://www.mpi-cbg.de
http://www.ist.ac.at

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neue Hefe-Spezies in Braunschweig entdeckt
12.12.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

nachricht Urbane Gärten: Wie Agrarschädlinge von Städten profitieren
12.12.2019 | Senckenberg Forschungsinstitut und Naturmuseen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Cheers! Maxwell's electromagnetism extended to smaller scales

More than one hundred and fifty years have passed since the publication of James Clerk Maxwell's "A Dynamical Theory of the Electromagnetic Field" (1865). What would our lives be without this publication?

It is difficult to imagine, as this treatise revolutionized our fundamental understanding of electric fields, magnetic fields, and light. The twenty original...

Im Focus: Hochgeladenes Ion bahnt den Weg zu neuer Physik

In einer experimentell-theoretischen Gemeinschaftsarbeit hat am Heidelberger MPI für Kernphysik ein internationales Physiker-Team erstmals eine Orbitalkreuzung im hochgeladenen Ion Pr9+ nachgewiesen. Mittels einer Elektronenstrahl-Ionenfalle haben sie optische Spektren aufgenommen und anhand von Atomstrukturrechnungen analysiert. Ein hierfür erwarteter Übergang von nHz-Breite wurde identifiziert und seine Energie mit hoher Präzision bestimmt. Die Theorie sagt für diese „Uhrenlinie“ eine sehr große Empfindlichkeit auf neue Physik und zugleich eine extrem geringe Anfälligkeit gegenüber externen Störungen voraus, was sie zu einem einzigartigen Kandidaten zukünftiger Präzisionsstudien macht.

Laserspektroskopie neutraler Atome und einfach geladener Ionen hat während der vergangenen Jahrzehnte Dank einer Serie technologischer Fortschritte eine...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: Wie Graphen-Nanostrukturen magnetisch werden

Graphen, eine zweidimensionale Struktur aus Kohlenstoff, ist ein Material mit hervorragenden mechanischen, elektronischen und optischen Eigenschaften. Doch für magnetische Anwendungen schien es bislang nicht nutzbar. Forschern der Empa ist es gemeinsam mit internationalen Partnern nun gelungen, ein in den 1970er Jahren vorhergesagtes Molekül zu synthetisieren, welches beweist, dass Graphen-Nanostrukturen in ganz bestimmten Formen magnetische Eigenschaften aufweisen, die künftige spintronische Anwendungen erlauben könnten. Die Ergebnisse sind eben im renommierten Fachmagazin Nature Nanotechnology erschienen.

Graphen-Nanostrukturen (auch Nanographene genannt) können, je nach Form und Ausrichtung der Ränder, ganz unterschiedliche Eigenschaften besitzen - zum Beispiel...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Hefe-Spezies in Braunschweig entdeckt

12.12.2019 | Biowissenschaften Chemie

Humane Papillomviren programmieren ihre Wirtszellen um und begünstigen so die Hautkrebsentstehung

12.12.2019 | Medizin Gesundheit

Urbane Gärten: Wie Agrarschädlinge von Städten profitieren

12.12.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics