Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Geschwindigkeitsregler für Proteinherstellung

12.07.2019

Die Übersetzung des genetischen Codes in Proteine, auch Translation genannt, ist ein lebenswichtiger Vorgang in jeder Zelle. Das Team von Prof. Mihaela Zavolan vom Biozentrum der Universität Basel hat nun bedeutende Faktoren entdeckt, die die Geschwindigkeit der Proteinsynthese in der Zelle beeinflussen. Die in "PNAS" veröffentlichten Ergebnisse ermöglichen es, die Kontrolle der Translation bei einer Vielzahl unterschiedlicher Zelltypen zu untersuchen.

Proteine erfüllen verschiedenste Aufgaben in Zellen, sie katalysieren Tausende von biochemischen Reaktionen, leiten Signale weiter und werden zum Aufbau von Zellstrukturen und bei Transportprozessen benötigt.


Schema von der Proteinsynthese in der Zelle: Die Ribosomen (weiss) übersetzen die mRNA (blau) in Proteine (rosa).

Universität Basel, Biozentrum

In jeder einzelnen Zelle unseres Körpers werden ununterbrochen Unmengen an Proteinen hergestellt.

Das Wachstum, die Differenzierung und die Funktion von Zellen ist eng mit der Proteinsynthese, also der Übersetzung des genetischen Codes in Proteine – der Translation – verbunden.

Das Team um Prof. Mihaela Zavolan vom Biozentrum hat Tausende von Genen in wachsenden Hefezellen untersucht und neue Einflussfaktoren entdeckt, die sich auf die Produktionsgeschwindigkeit der Proteine auswirken.

Proteinsynthese: vom genetischen Code zum Protein

Für die Proteinherstellung braucht es drei Hauptakteure: die mRNA, welche die genetische Information überträgt, dient als Matrize; die tRNA bringt die Proteinbausteine, die Aminosäuren, zum Ribosom und das Ribosom setzt die Aminosäuren zu einem Protein zusammen.

In einer eukaryotischen Zelle gibt es Millionen von Ribosomen, die je nach Bedarf die in der Zelle benötigten Proteine herstellen. Wie auf einer Perlenkette aufgereiht, arbeiten dabei gleich mehrere Ribosomen an einem mRNA-Strang und produzieren zur gleichen Zeit die entsprechende Menge an Proteinen.

Die Translation beeinflussende Faktoren

"Wir wollten herausfinden, welche Faktoren die Syntheserate von Proteinen beeinflussen, insbesondere auf der Ebene der Elongation, also die Verlängerung der Aminosäurekette. Frühere Studien deuteten darauf hin, dass die aufgereihten Ribosomen selten zusammenstossen und so die Proteinproduktion drosseln würden", sagt Zavolan, "aber wir konnten für einen solchen Crash keinen Hinweis finden, auch nicht für mRNAs mit einer hohen Ribosomen-Dichte."

Darüber hinaus fanden die Forscher heraus, dass sowohl die Ladung der eingebauten Aminosäuren als auch die Verfügbarkeit von tRNAs einen Einfluss auf die Geschwindigkeit der Translation haben.

"Dies ist zum Beispiel bei den Proteinen des Ribosoms selbst der Fall. Wir haben festgestellt, dass die positiv geladenen Aminosäuren von ribosomalen Proteinen die Geschwindigkeit, mit der die Ribosomen die entsprechenden mRNAs ablesen, deutlich senken", so Zavolan.

"Diese ribosomalen Proteine sind jedoch in vielerlei Hinsicht optimiert um eine hohe Translationsgeschwindigkeit aufrechtzuerhalten, beispielsweise durch Codons für die es viele passende tRNAs gibt." Neben bereits zuvor bekannten Parametern spielen die in der Studie beschriebenen Faktoren eine wesentliche Rolle, um die Unterschiede in den Translationsraten zwischen mRNAs zu erklären.

Von sensitiven mRNAs zu Krankheiten

Die Wissenschaftler möchten nun untersuchen, ob und wie Zellen über die Kontrolle der Translation ihre Identität erhalten. Es gibt Hinweise darauf, dass bestimmte mRNAs empfindlicher auf Veränderungen in der Anzahl von Ribosomen in der Zelle reagieren als andere. Eine dieser mRNAs codiert für einen Transkriptionsfaktor, der an der Bildung roter Blutkörperchen beteiligt ist.

"Eine Verringerung der Ribosomen-Menge, zum Beispiel durch Mutationen, beeinflusst diesen Faktor und beeinträchtigt den Reifungsprozess der roten Blutkörperchen. Die davon Betroffenen leiden deshalb an Blutarmut", sagt Zavolan. "Mit der Ausweitung unseres Ansatzes auf andere Systeme wollen wir besser verstehen, welche mRNAs besonders empfindlich auf Veränderungen in der Translation reagieren."

Wissenschaftliche Ansprechpartner:

Prof. Dr. Mihaela Zavolan, Universität Basel, Biozentrum, Tel. +41 61 207 15 77, E-Mail: mihaela.zavolan@unibas.ch
Dr. Katrin Bühler, Universität Basel, Kommunikation Biozentrum, Tel. +41 61 207 09 74, E-Mail: katrin.buehler@unibas.ch

Originalpublikation:

Andrea Riba, Noemi Di Nanni, Nitish Mittal, Erik Arhne, Alexander Schmidt, Mihaela Zavolan. Protein synthesis rates and ribosome occupancies reveal determinants of translation elongation rates. PNAS.

Weitere Informationen:

https://www.pnas.org/content/early/2019/07/05/1817299116

Dr. Katrin Bühler | Universität Basel
Weitere Informationen:
http://www.unibas.ch

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neuartiges Antibiotikum gegen Problemkeime in Sicht
21.11.2019 | Justus-Liebig-Universität Gießen

nachricht Neue Forschungsinitiative CHEM|ampere: Nachhaltige chemische Produktion mit Elektrizität
21.11.2019 | Universität Stuttgart

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartiges Antibiotikum gegen Problemkeime in Sicht

Internationales Forscherteam mit Beteiligung der Universität Gießen entdeckt neuen Wirkstoff gegen gramnegative Bakterien – Darobactin attackiert die Erreger an einem bislang unbekannten Wirkort

Immer mehr bakterielle Erreger von Infektionskrankheiten entwickeln Resistenzen gegen die marktüblichen Antibiotika. Typische Krankenhauskeime wie Escherichia...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

Konventionelle Lichtmikroskope können Strukturen nicht mehr abbilden, wenn diese einen Abstand haben, der kleiner als etwa die Lichtwellenlänge ist. Mit „Super-resolution Microscopy“, entwickelt seit den 80er Jahren, kann man diese Einschränkung jedoch umgehen, indem fluoreszierende Materialien eingesetzt werden. Wissenschaftlerinnen und Wissenschaftler am Max-Planck-Institut für Polymerforschung haben nun entdeckt, dass aus Graphen bestehende Nano-Moleküle genutzt werden können, um diese Mikroskopie-Technik zu verbessern. Diese Nano-Moleküle bieten eine Reihe essentieller Vorteile gegenüber den bisher verwendeten Materialien, die die Mikroskopie-Technik noch vielfältiger einsetzbar machen.

Mikroskopie ist eine wichtige Untersuchungsmethode in der Physik, Biologie, Medizin und vielen anderen Wissenschaften. Sie hat jedoch einen Nachteil: Ihre...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Im Focus: Mit künstlicher Intelligenz zum besseren Holzprodukt

Der Empa-Wissenschaftler Mark Schubert und sein Team nutzen die vielfältigen Möglichkeiten des maschinellen Lernens für holztechnische Anwendungen. Zusammen mit Swiss Wood Solutions entwickelt Schubert eine digitale Holzauswahl- und Verarbeitungsstrategie unter Verwendung künstlicher Intelligenz.

Holz ist ein Naturprodukt und ein Leichtbauwerkstoff mit exzellenten physikalischen Eigenschaften und daher ein ausgezeichnetes Konstruktionsmaterial – etwa...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Sichere Datenübertragung mit Ultraschall am Handy: neue Methode zur Nahfeldkommunikation

21.11.2019 | Kommunikation Medien

Rasante Entstehung von Antibiotikaresistenzen im Behandlungsalltag

21.11.2019 | Medizin Gesundheit

Gesundheits-App als Fitness-Coach für Familien

21.11.2019 | Kommunikation Medien

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics