Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gegenverkehr im Rückenmark

19.12.2013
Es ist erstaunlich, welche Fortschritte ein Kleinkind gerade im ersten Jahr macht. Doch was passiert im Nervensystem, um den Wandel von unkoordiniertem Strampeln in eine fein koordinierte Bewegung zu ermöglichen?

Wissenschaftler des Max-Planck-Instituts für Neurobiologie in Martinsried bei München haben nun mit Kollegen aus den USA einen neuen Nervenzelltyp in Mäusen beschrieben, der Einblick in diese entwicklungsbiologische Frage gibt.


Im embryonalen Rückenmark lila angefärbt, wird ein neu beschriebener Nervenzelltyp sichtbar. Diese dienen als Leitsystem für Axone, die aus dem Gehirn ins Rückenmark wachsen. © MPI für Neurobiologie / Paixão

Die Fortsätze dieser Zellen wachsen während der Embryonalentwicklung vom Rückenmark ins Gehirn. Sie fungieren als Wegbereiter für andere Nervenzellen, die erst nach der Geburt aus dem Gehirn ins Rückenmark wachsen und willkürliche Bewegungen steuern.

Greifen wir mit der Hand gezielt nach einem Objekt oder stecken den Fuß in einen Stiefel, so koordiniert und kontrolliert das Gehirn diese Bewegungen. Damit dies möglich ist, muss es eine Nervenbahn geben, über die Anweisungen vom Gehirn zum Beispiel zum Fuß geschickt und umgekehrt auch Reize aus der Fuß-Umgebung an das Gehirn geleitet werden.

Solche Nervenbahnen entstehen, wenn die Fortsätze (Axone) von Nervenzellen während der Entwicklung auswachsen. Je nach Organismus und zu bewegendem Körperteil können die Axone dabei viele Zentimeter lang werden.

Wie sie dabei ihren Weg durch den Körper finden, und welche Moleküle bei der Wegfindung eine Rolle spielen, das untersuchen Rüdiger Klein und sein Team am Max-Planck-Institut für Neurobiologie. Im Fokus der Wissenschaftler stehen besonders die Ephrin- Signalmoleküle und ihre Bindungspartner, die Eph-Rezeptoren. Ephrine und Eph-Rezeptoren befinden sich unter anderem auf der Oberfläche von Nervenzellen und helfen den wachsenden Zellen, ihren Weg und ihre Partnerzellen zu finden.

Gegenverkehr mit Leitsystem

Ephrine und Eph-Rezeptoren sind wesentlich am Aufbau der neuronalen Netze beteiligt, die unsere Bewegungsabläufe steuern. Das fanden Rüdiger Klein und sein Team bereits vor längerer Zeit an ihrem Studienobjekt, der Maus, heraus.

Die Neurobiologen konnten zeigen, dass das Ephrin/Eph-System Nervenzellen leitet, die ihre Axone nach der Geburt vom Gehirn ins Rückenmark schicken und willkürliche Bewegungen von Beinen und Armen lenken. Bei der Untersuchung von Axonen, die in die entgegengesetzte Richtung verlaufen, also vom Rückenmark ins Gehirn, stießen die Forscher nun auf einen neuen Zelltyp, der ebenfalls Eph-Rezeptoren enthielt. „Genau dort, wo die "absteigenden" Axone wuchsen, verliefen parallel dazu auch die "aufsteigenden" Axone“, berichtet Rüdiger Klein. „Da haben wir uns natürlich gefragt, wie dieses parallele Wachstum in der Entwicklung gesteuert wird.“

Die darauf folgenden Untersuchungen der Neurobiologen zeigten Erstaunliches: Im Gegensatz zu den bekannten Zellen wuchsen die aufsteigenden Axone des neuen Zelltyps nicht erst nach der Geburt, sondern bereits während der Embryonalentwicklung aus. Zudem wurde ihr Wachstum vom gleichen Ephrin/Eph-Signalsystem geleitet, wie das der absteigenden Axone. „Es sieht so aus, als würden die aufsteigenden Axone während der Embryonalentwicklung sozusagen einen Kanal "vorbohren", für die erst nach der Geburt auswachsenden, absteigenden Axone“, erklärt Rüdiger Klein.

Mögliches Feedbacksystem

Die weiteren Untersuchungen der neuen, aufsteigenden Nervenzellen legen nahe, dass sie ihren Input von berührungsempfindlichen Zellen erhalten. Es könnte sich daher hier um ein neues Feedback-System handeln: Willkürliche Bewegungen werden durch Signale von berührungsempfindlichen Zellen verfeinert, und so die beabsichtigte Bewegung der Umgebung angepasst – der Fuß rutscht in den Stiefel. „Was uns erstaunt hat, ist die Tatsache, dass ein und dasselbe Leitsystem die absteigenden und auch die aufsteigenden Axone lenkt“, so Klein. „Es ist ein sehr schönes Beispiel dafür, wie mit dem flexiblen Einsatz einzelner Moleküle und somit mit wenigen Genen, ein hochkomplexes Nervensystem aufgebaut werden kann.“ Ob es sich tatsächlich um das vermutete Feedback-System handelt, die auf- und absteigenden Zellen also über Synapsen verbunden sind, das wollen die Wissenschaftler als nächstes herausfinden. Schritt für Schritt wollen sie so die entwicklungsbiologischen Vorgänge entschlüsseln, durch die das Gehirn Bewegungsabläufe koordinieren und steuern kann.

Originalpublikation

Sónia Paixão, Aarathi Balijepalli, Najet Serradj, Jingwen Niu, Wenqui Luo, John H. Martin, Rüdiger Klein
EphrinB3/EphA4-mediated guidance of ascending and descending spinal tracts
Neuron, 18. Dezember 2013
Kontakt
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie, Martinsried
Tel.: 089 8578 - 3514
E-Mail: merker@neuro.mpg.de
www.neuro.mpg.de
Prof. Dr. Rüdiger Klein
Abteilung Moleküle – Signale – Entwicklung
Max-Planck-Institut für Neurobiologie, Martinsried
Email: rklein@neuro.mpg.de
http://www.neuro.mpg.de/klein/de - Webseite von Rüdiger Klein

Dr. Stefanie Merker | Max-Planck-Institut
Weitere Informationen:
http://www.neuro.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bedeutung des „Ozeanwetters“ für Ökosysteme
21.08.2018 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht In Form gebracht
21.08.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Mischung macht‘s: Jülicher Forscher entwickeln schnellladefähige Festkörperbatterie

Mit Festkörperbatterien sind aktuell große Hoffnungen verbunden. Sie enthalten keine flüssigen Teile, die auslaufen oder in Brand geraten könnten. Aus diesem Grund sind sie unempfindlich gegenüber Hitze und gelten als noch deutlich sicherer, zuverlässiger und langlebiger als herkömmliche Lithium-Ionen-Batterien. Jülicher Wissenschaftler haben nun ein neues Konzept vorgestellt, das zehnmal größere Ströme beim Laden und Entladen erlaubt als in der Fachliteratur bislang beschrieben. Die Verbesserung erzielten sie durch eine „clevere“ Materialwahl. Alle Komponenten wurden aus Phosphatverbindungen gefertigt, die chemisch und mechanisch sehr gut zusammenpassen.

Die geringe Stromstärke gilt als einer der Knackpunkte bei der Entwicklung von Festkörperbatterien. Sie führt dazu, dass die Batterien relativ viel Zeit zum...

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Dialog an Deck, Science Slam und Pong-Battle

21.08.2018 | Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Zukünftige Informationstechnologien: Wärmetransport auf der Nanoskala unter die Lupe genommen

21.08.2018 | Physik Astronomie

Bedeutung des „Ozeanwetters“ für Ökosysteme

21.08.2018 | Biowissenschaften Chemie

Auf dem Weg zur personalisierten Medizin

21.08.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics