Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Freie-Elektronen-Laser enthüllt detaillierte Architektur von Proteinen

01.06.2012
Ultrakurze Röntgenblitze gestatten Einblicke in die Atomstruktur von Makromolekülen unter Verwendung winziger Proteinkristalle

Im Jahr, in dem sich Max von Laues Entdeckung der Röntgenbeugung zur Aufklärung der Atomstruktur von Molekülen zum 100. Mal jährt, hat ein internationales Forscherteam winzige Proteinkristalle mit Hilfe ultrakurzer Röntgenpulse aus dem weltweit ersten Freie-Elektronen-Laser für harte Röntgenstrahlung analysiert, der „Linac Coherent Light Source“ des US-Energieministeriums in Stanford.


Schematische Darstellung des Messaufbaus am “Coherent X-ray Imaging” Strahlrohr der Linac Coherent Light Source. Millionen winziger Kristalle werden von oben in einem dünnen Flüssigkeitsstrahl in den Röntgenstrahl des Freie-Elektron-Lasers injiziert. Die Beugungsbilder, die entstehen, wenn ein Kriställchen von einem Freie-Elektron-Laser-Blitz getroffen wird, werden auf dem Detektor registriert (links). ©


Struktur des Proteins Lysozym. Die räumliche Anordnung der 129 Aminosäuren des Proteins ist schematisch in Form von Spiralen (Helices) und Pfeilen (Faltblättern) dargestellt. ©

Die Untersuchung zeigt das enorme Potenzial von Freie-Elektronen-Lasern, durch Belichtung winziger Kristalle mit ultrakurzen Röntgenpulsen hochdetaillierte Strukturinformation von Makromolekülen zu erhalten – und das, obwohl die Kristalle durch die gigantische Intensität der Laser zerstört werden. In der aktuellen Untersuchung enthüllt die Strukturanalyse Details mit einer räumlichen Auflösung von 0,2 Millionstel Millimetern.

Das Team, dem Forscher des Max-Planck-Instituts für medizinische Forschung in Heidelberg und der Max-Planck-Advanced Study Group in Hamburg angehören, konnte belegen, dass die neuen Daten mit den Daten aus konventionellen Röntgenquellen für bekannte große Kristalle übereinstimmen. Freie-Elektronen-Laser sind also ein wichtiges neues Werkzeug für strukturbiologische Untersuchungen großer makromolekularer Komplexe und Membranproteine, von denen viele für die Entwicklung von Arzneimitteln bedeutsam sind.

Freie-Elektronen-Röntgenlaser sind extrem leistungsstarke neuartige Röntgenquellen, die ultrakurze Lichtblitze enorm hoher Intensität erzeugen. Die Intensität eines solchen Röntgenpulses ist mehr als eine Milliarde Mal höher als die der stärksten konventionellen Röntgenquellen, und das bei einer tausendfach kürzeren Pulsdauer von nur einigen Billiardstel Sekunden (Femtosekunden). Diese Eigenschaften bieten Forschern völlig neue Möglichkeiten zur Erforschung der Nanowelt, einschließlich der Struktur biologischer Materialien.

Das Wissen über die dreidimensionale räumliche Architektur von Molekülen beruht größtenteils auf der Röntgenkristallografie. Dabei wird das Signal des an den Molekülen gestreuten Röntgenlichts verstärkt, indem diese in bis zu einigen Zehntel Millimeter großen Kristallen angeordnet werden. So große Kristalle sind jedoch von Biomolekülen aufgrund ihrer weitverbreiteten Flexibilität und Instabilität meistens nur sehr schwer herzustellen, Dazu kommt, dass sich Biomoleküle oft nur in sehr geringen Mengen anreichern lassen. Freie-Elektronen-Laser können dagegen auch Daten von winzigen Kristallen liefern, die ihre strukturellen Geheimnisse mit herkömmlichen Verfahren auf Grund der durch die Strahlung verursachten Schädigung nicht preisgeben können. Diese winzigen Kristalle werden zwar auch durch die enorm starken Lichtblitze der Freie-Elektronen-Laser vollständig zerstört, die ultrakurzen Pulse können jedoch die Kristalle durchlaufen und ein auswertbares Beugungssignal erzeugen, bevor die ersten Schäden auftreten.

Im Gegensatz zur konventionellen Kristallografie, bei der ein einziger großer Kristall im Strahl rotiert wird, werden bei diesem Verfahren Kristalle mit Hilfe eines Flüssigkeitsstrahls in den Freie-Elektronen-Laserstrahl injiziert, welche nacheinander der Strahlung ausgesetzt werden. Dieses Konzept der seriellen Femtosekunden-Kristallografie wurde zuvor vom gleichen Forscherteam an der „Linac Coherent Light Source“ in Stanford mit dem von der Max Planck Advanced Study Group entwickelten „CAMP“-Instrument demonstriert. Damals gab es jedoch nur relativ langwellige Röntgenstrahlen, was die Detailgenauigkeit der Ergebnisse begrenzte.

Erst seit Kurzem ist an der „Linac Coherent Light Source“ dank dem neuen „Coherent X-ray Imaging“ Instrument der Einsatz kurzwelliger Röntgenstrahlen möglich, so dass jetzt auch Details im atomaren Aufbau der Moleküle messbar sind. Als Test für das Verfahren wurde mit dem kleinen Protein Lysozym ein bekanntes Modellsystem untersucht, dessen Raumstruktur erstmals bereits 1967 aufgeklärt wurde.

Die Forscher setzten mehr als 10000 Beugungsbilder von nur einem tausendstel Millimeter messenden Kristallen zu einem Datensatz zusammen. Er stimmte sehr gut mit Referenz Daten überein, die von hundertfach größeren Lysozym-Kristallen mit konventionellen Methoden gesammelt wurden. Zudem wurden keine signifikanten Strahlungsschäden entdeckt. Dieses Experiment zeigt, dass der Freie-Elektronen-Laser ein wichtiges neues Hilfsmittel für die biologische Forschung an großen makromolekularen Komplexen ist. Er eröffnet völlig neue Perspektiven für die strukturelle Biologie“, sagt die Leiterin des Max-Planck-Teams Ilme Schlichting. Da kleine Kristalle typischerweise einfacher herzustellen sind als größere, ist dies von weitreichender Bedeutung für alle Untersuchungen von schwer zu kristallisierenden Molekülen - dazu gehören etwa 60 Prozent aller Proteine. Viele davon sind wichtige Angriffspunkte für neue Medikamente.

Ansprechpartner

Prof. Dr. Ilme Schlichting
Max-Planck-Institut für medizinische Forschung
Telefon: +49 6221 486-500
Fax: +49 6221 486-585
Email: ilme.schlichting@­mpimf-heidelberg.mpg.de
Lukas Lomb
Max-Planck-Institut für medizinische Forschung
Telefon: +49 6221 486-519
Email: lukas.lomb@­mpimf-heidelberg.mpg.de

Originalveröffentlichung
Boutet et al.
High-Resolution Protein Structure Determination by Serial Femtosecond Crystallography

Science, 1. Juni 2012

Prof. Dr. Ilme Schlichting | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/5825076/freie-elektronen-laser

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics