Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Forscher vereinheitlichen Theorien der neuronalen Informationskodierung

20.12.2017

Wissenschaftler am IST Austria und in Paris kombinieren und erweitern bisherige Theorien darüber, wie Neuronen in unseren sensorischen Systemen Informationen selektieren und übertragen | Neue Theorie gibt konkrete Vorhersagen für bisher nicht untersuchte Kodierungssysteme

Digitale Videokameras können unglaublich detailliert aufzeichnen, aber das Speichern all dieser Daten würde sehr viel Platz beanspruchen. Den Ingenieuren stellt sich daher die Frage, wie man ein Video komprimieren, also Informationen entfernen kann, so dass man beim Abspielen den Unterschied nicht bemerkt.


Neuronen in der Netzhaut kodieren die auf sie einströmenden Informationen um sie an das Gehirn weiter zu leiten

IST Austria/Birgit Rieger

Mit einem ähnlichen Problem sind auch unsere Augen konfrontiert: sie werden mit visuellen Informationen überflutet, aber die Möglichkeiten der Neuronen in unseren Augen sind begrenzt. Wie also wählen Neuronen aus dieser Menge an Reizen aus, welche Information extrahiert und an das Gehirn gesendet wird? Neurowissenschaftler stellen sich diese Frage seit Jahrzehnten und haben verschiedene Theorien entwickelt, um vorherzusagen, was Neuronen in bestimmten Situationen tun werden.

Jetzt haben Matthew Chalk (ehemals Postdoc am IST Austria und derzeit am Vision Institute in Paris), IST Austria-Professor Gašper Tkačik sowie Olivier Marre, der ein Netzhautforschungslabor am Vision Institute leitet, ein Rahmenwerk entwickelt, das die vorherigen Theorien als Sonderfälle verbindet. Es ermöglicht den Forschern auch, Vorhersagen über jene Arten von Neuronen zu machen, die bisher von keiner Theorie beschrieben wurden.

Eines der Hauptziele der sensorischen Neurowissenschaften besteht darin, neuronale Reaktionen durch mathematische Modelle vorherzusagen. Diese Vorhersagen basierten bisher auf drei Haupttheorien, von denen jede ein anderes Anwendungsgebiet hatte. Jedes entsprach unterschiedlichen Annahmen über die internen Beschränkungen der Neuronen, die Art des Signals und den Zweck der gesammelten Information. Ein neuronaler Code ist im Wesentlichen eine Funktion die voraussagt, wann ein Neuron "feuern" wird. Das Aktionspotential-Signal entspricht dabei einer digitalen "1" im Binärsystem.

Sammlungen von einem oder mehreren Neuronen, die zu bestimmten Zeiten feuern, können somit Informationen codieren. Eine effiziente Kodierung setzt voraus, dass die Neuronen unter Berücksichtigung ihrer internen Beschränkungen wie zum Beispiel Rauschen oder Metabolismus, so viel Information wie möglich kodieren. Vorhersagende Kodierung dagegen setzt voraus, dass nur jene Information kodiert wird, die für die Vorhersage der Zukunft relevant ist, zum Beispiel in welche Richtung ein Insekt fliegen wird.

Schlussendlich nimmt „sparse coding“ (die spärliche Kodierung) an, dass nur einige Neuronen gleichzeitig aktiv sind. Allerdings war unklar, inwieweit diese Theorien verwandt waren und ob sie vielleicht sogar miteinander übereinstimmten. Diese neuesten Entwicklungen bringen nun Ordnung in die theoretische Landschaft: "Bisher wusste man nicht, wie man diese Theorien verbinden oder vergleichen kann. Unser Rahmenwerk überwindet das indem es sie innerhalb einer übergreifenden Struktur zusammenfügt", erklärt Gašper Tkačik.

Im Kontext dieses Rahmenwerks kann ein neuronaler Code als der Code interpretiert werden, der eine bestimmte mathematische Funktion maximiert. Diese Funktion - und der neuronale Code, der sie maximiert - hängt von drei Parametern ab: vom Rauschen im Signal, vom Ziel beziehungsweise der Aufgabe, zum Beispiel ob das Signal zur Vorhersage der Zukunft verwendet wird, und von der Komplexität des zu codierenden Signals. Die oben beschriebenen Theorien gelten nur für bestimmte Wertebereiche dieser Parameter und decken nicht den gesamten möglichen Parameterraum ab. Das führt zu Problemen beim Versuch, sie experimentell zu testen.

Gašper Tkačik erklärt: "Wenn Sie Stimuli entwerfen, die sie dann den Neuronen präsentieren um das Modell zu testen, ist es extrem schwierig zu unterscheiden, ob ein Neuron nicht vollständig mit Ihrer Lieblingstheorie übereinstimmt oder ob Ihre Lieblingstheorie einfach unvollständig ist. Unser einheitlicher Rahmen kann nun konkrete Vorhersagen für Parameterwerte geben, die zwischen denen der zuvor untersuchten Fälle liegen."

Die vereinheitlichte Theorie des Teams überwindet frühere Einschränkungen, indem sie den Neuronen erlaubt, "gemischte" Kodierungsziele zu haben. Sie müssen also nicht in eine klare, zuvor untersuchte Kategorie fallen. Zum Beispiel kann die neue Theorie den Fall abdecken, in dem Neuronen einzeln ein sehr hohen Rauschen haben, aber dennoch spärliche Stimuli effizient codieren sollten. Allgemeiner ausgedrückt können optimale neuronale Codes auf einem Kontinuum entsprechend den Parameterwerten platziert werden, die Optimalitätsbeschränkungen definieren.

Das erklärt Phänomene, die zuvor beobachtet wurden, aber durch keines der existierenden Modelle erklärt werden konnten. Für den Erstautor Matthew Chalk ist dies einer der spannendsten Beiträge ihrer Arbeit: "Viele der Theorien, die Vorhersagen erlauben, sind im Test unflexibel: Entweder haben sie das richtige Ergebnis vorhergesagt oder nicht. Wovon wir mehr brauchen und was unsere Studie bietet, sind Rahmenwerke die in der Lage sind, Hypothesen für eine Vielzahl von Situationen und Annahmen zu erzeugen."

Abgesehen davon, dass es die Theorie mit größerer Flexibilität ausstattet, macht das Rahmenwerk der Forscher konkrete Vorhersagen für Arten von neuronaler Kodierung, die bisher unerforscht waren, zum Beispiel für Kodierung, die sowohl spärlich als auch vorhersagend ist. Als Nachfolgeprojekt zu ihrer neuen theorie, entwirft Matthew Chalk Experimente, um diese Vorhersagen zu überprüfen und um Neuronen als effizient, vorhersagend, spärlich oder als eine Kombination dieser Kodierungsziele zu kategorisieren. In Olivier Marres Labor am Institut de la Vision in Paris konzentriert er sich auf die Netzhaut und entwickelt visuelle Stimuli, die die Netzhautneuronen aktivieren, um ihre Kodierungsziele am besten zu enthüllen.

Zudem kann das Rahmenwerk auch breiter angewendet werden: "Man muss nicht unbedingt nur an Neuronen denken", fügt Gašper Tkačik hinzu. "Die Idee, dieses Problem unter dem Gesichtspunkt der Optimierung zu betrachten, kann bei jeder Art von Systemen verwendet werden, die Signale verarbeiten. Und die Approximation erlaubt uns, auch solche Systeme zu studieren deren Funktionen normalerweise mit Berechnungen schwer zu bewältigen sind." Den Grundstein für diese weiteren Anwendungen legten die drei Wissenschaftler bereits in einem früherer Artikel, der in Advances in Neural Information Processing Systems (NIPS) publiziert wurde.

IST Austria

Das Institute of Science and Technology (IST Austria) in Klosterneuburg ist ein Forschungsinstitut mit eigenem Promotionsrecht. Das 2009 eröffnete Institut widmet sich der Grundlagenforschung in den Naturwissenschaften, Mathematik und Computerwissenschaften. Das Institut beschäftigt ProfessorInnen nach einem Tenure-Track-Modell und Post-DoktorandInnen sowie PhD StudentInnen in einer internationalen Graduate School. Neben dem Bekenntnis zum Prinzip der Grundlagenforschung, die rein durch wissenschaftliche Neugier getrieben wird, hält das Institut die Rechte an allen resultierenden Entdeckungen und fördert deren Verwertung. Der erste Präsident ist Thomas Henzinger, ein renommierter Computerwissenschaftler und vormals Professor an der University of California in Berkeley, USA, und der EPFL in Lausanne, Schweiz. www.ist.ac.at

Quellen:
• Matthew Chalk, Olivier Marre, and Gašper Tkačik: “Towards a unified theory of efficient, predictive and sparse coding”, PNAS 2017
• Previous paper in NIPS: Matthew Chalk, Olivier Marre, and Gašper Tkačik: “Relevant sparse codes with variational information bottleneck”, NIPS 2016
https://papers.nips.cc/paper/6101-relevant-sparse-codes-with-variational-informa...

Weitere Informationen:

http://www.pnas.org/content/early/2017/12/18/1711114115.abstract Link zum PNAS-Artikel
http://ist.ac.at/nc/de/news-media/news/news-detail/article/unifying-the-theories... Link zur Pressemitteilung auf der Seite des IST Austria
https://gtkacik.pages.ist.ac.at/ Link zur Webseite von Prof. Gašper Tkačik

Dr. Elisabeth Guggenberger | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Immunologie - Rachenmandeln als Test-Labor
27.02.2020 | Ludwig-Maximilians-Universität München

nachricht Pestizide erhöhen Risiko für Tropenkrankheit Schistosomiasis / Belastete Gewässer fördern Zwischenwirt des Erregers
27.02.2020 | Helmholtz-Zentrum für Umweltforschung - UFZ

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler beleuchten aktuellen Stand der Anwendung des Maschinenlernens bei Forschung an aktiven Materialien

Verfahren des Maschinenlernens haben durch die Verfügbarkeit von enormen Datenmengen in den vergangenen Jahren einen großen Zuwachs an Anwendungen in vielen Gebieten erfahren: vom Klassifizieren von Objekten, über die Analyse von Zeitreihen bis hin zur Kontrolle von Computerspielen und Fahrzeugen. In einem aktuellen Review in der Zeitschrift „Nature Machine Intelligence“ beleuchten Autoren der Universitäten Leipzig und Göteborg den aktuellen Stand der Anwendung und Anwendungsmöglichkeiten des Maschinenlernens im Bereich der Forschung an aktiven Materialien.

Als aktive Materialien bezeichnet man Systeme, die durch die Umwandlung von Energie angetrieben werden. Bestes Beispiel für aktive Materialien sind biologische...

Im Focus: Computersimulationen stellen bildlich dar, wie DNA erkannt wird, um Zellen in Stammzellen umzuwandeln

Forscher des Hubrecht-Instituts (KNAW - Niederlande) und des Max-Planck-Instituts in Münster haben entdeckt, wie ein essentielles Protein bei der Umwandlung von normalen adulten humanen Zellen in Stammzellen zur Aktivierung der genomischen DNA beiträgt. Ihre Ergebnisse werden im „Biophysical Journal“ veröffentlicht.

Die Identität einer Zelle wird dadurch bestimmt, ob die DNA zu einem beliebigen Zeitpunkt „gelesen“ oder „nicht gelesen“ wird. Die Signalisierung in der Zelle,...

Im Focus: Bayreuther Hochdruck-Forscher entdecken vielversprechendes Material für Informationstechnologien

Forscher der Universität Bayreuth haben ein ungewöhnliches Material entdeckt: Bei einer Abkühlung auf zwei Grad Celsius ändern sich seine Kristallstruktur und seine elektronischen Eigenschaften abrupt und signifikant. In diesem neuen Zustand lassen sich die Abstände zwischen Eisenatomen mithilfe von Lichtstrahlen gezielt verändern. Daraus ergeben sich hochinteressante Anwendungsmöglichkeiten im Bereich der Informationstechnologien. In der Zeitschrift „Angewandte Chemie – International Edition“ stellen die Wissenschaftler ihre Entdeckung vor. Die neuen Erkenntnisse sind aus einer engen Zusammenarbeit mit Partnereinrichtungen in Augsburg, Dresden, Hamburg und Moskau hervorgegangen.

Bei dem ungewöhnlichen Material handelt es sich um ein Eisenoxid mit der Zusammensetzung Fe₅O₆. In einem Hochdrucklabor des Bayerischen Geoinstituts (BGI),...

Im Focus: Von China an den Südpol: Mit vereinten Kräften dem Rätsel der Neutrinomassen auf der Spur

Studie von Mainzer Physikern zeigt: Experimente der nächsten Generation versprechen Antworten auf eine der aktuellsten Fragen der Neutrinophysik

Eine der spannendsten Herausforderungen der modernen Physik ist die Ordnung oder Hierarchie der Neutrinomassen. Eine aktuelle Studie, an der Physiker des...

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

CLIMATE2020 – Weltweite Online-Klimakonferenz vom 23. bis 30. März 2020

26.02.2020 | Veranstaltungen

Automatisierung im Dienst des Menschen

25.02.2020 | Veranstaltungen

Genomforschung für den Artenschutz - Internationale Fachtagung in Frankfurt

25.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Riesiger 3D-Drucker soll tonnenschwere Getriebeteile aus Stahl fertigen

27.02.2020 | Maschinenbau

Immunologie - Rachenmandeln als Test-Labor

27.02.2020 | Biowissenschaften Chemie

Pestizide erhöhen Risiko für Tropenkrankheit Schistosomiasis / Belastete Gewässer fördern Zwischenwirt des Erregers

27.02.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics