Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

FLAM-Seq: Das ganze Bild der Boten-RNA und ihrer Enden

13.08.2019

Forscherinnen und Forscher des Max-Delbrück-Centrums für Molekulare Medizin (MDC) haben ein Verfahren entwickelt, das eine komplette Sequenzierung von Boten-RNA-Molekülen mit ihren individuellen Enden, den Poly(A) Tails, ermöglicht. Sie zeigen, dass FLAM-seq die Möglichkeit bietet, grundlegende Fragen zur Genexpression zu beantworten.

Forscherinnen und Forscher des Berliner Instituts für Medizinische Systembiologie (BIMSB) des MDC haben ein Werkzeug entwickelt, das erstmals eine genaue Sequenzierung der Boten-RNA zusammen mit ihren Endstücken ermöglicht. Professor Nikolaus Rajewsky und sein Team haben dieses neue Werkzeug, die Full Length Poly(A) und mRNA-Sequenzierung, kurz „FLAM-seq“, kürzlich in der Fachzeitschrift Nature Methods beschrieben.


Boten-RNA (mRNA) ist äußerst wichtig, da sie Anweisungen aus der DNA in Proteine übersetzt, die wiederum jeweils bestimmte Aufgaben erfüllen. In jeder Zelle befinden sich Hunderttausende mRNA-Moleküle, die Proteine erzeugen. Die meisten von ihnen weisen ein „Poly(A)-Endstück“ auf – eine Reihe von Adenosinen, die As der grundlegenden RNA-Bausteine A, G, U und C. Die Wissenschaft will den Einfluss der Endstücke auf die mRNA- und auf die Proteinproduktion verstehen.

„Das ist äußerst wichtig, da fast alle mRNAs mit einem Poly(A)-Endstück ausgestattet sind. Warum ist das so?“, fragt Dr. Ivano Legnini, Postdoktorand im MDC-Labor für Systembiologie genregulatorischer Elemente und einer der Erstautoren der Studie. „Das ist ein Schlüssel zum Verständnis der Genregulation; und das ist der Prozess, der jeder unserer Zellen ihre Identität gibt.“

Das volle Programm

Forscherinnen und Forscher sind davon überzeugt, dass die Länge der Poly(A)-Endstücke eine wichtige Rolle bei der Regulierung der Genexpression spielt. Je länger das Endstück ist, desto mehr Proteine produziert die mRNA, vermutete man viele Jahre lang. In jüngster Zeit konnte jedoch gezeigt werden, dass die Korrelation in einigen Systemen oder Entwicklungsstufen zutrifft, nicht aber generell.

Mit dem Fortschritt in den Sequenzierungstechnologien konnte die Forschung die Länge der Poly(A)-Endstücke abschätzen und eine Vorstellung davon bekommen, zu welchen Genen sie gehören. Aber es gab immer noch keine vollständigen Sequenzen der mRNA oder ihrer Endstücke.

Erst in den letzten Jahren wurden neue Sequenzierer entwickelt, die ganze Moleküle mit Tausenden von Nukleotiden sequenzieren können. Das MDC-Team um Nikolaus Rajewsky, dem Leiter des Labors für Systembiologie genregulatorischer Elemente und wissenschaftlichen Direktor des BIMSB, interessierte, ob sie mit dieser neuen Technologie die gesamte mRNA mit ihrem Endstück sequenzieren können. Dazu mussten sie zunächst eine „cDNA-Bibliothek“ vorbereiten – die komplementäre DNA oder das DNA-Äquivalent der mRNA und ihrem Endstück.

Das klang einfach. Aber es dauerte fast sechs Monate, bis das Team ein Protokoll entwickelt hatte, um die gesamte mRNA und ihr Endstück in einen einzelnen DNA-Strang zu kopieren. Aufbauend auf der Expertise der technischen Assistentin Salah Ayoub verbesserte das Team den Vorbereitungsprozess mit verschiedenen chemischen Werkzeugen, bis es die optimale Rezeptur fand. Entscheidend war, dass die Forscherinnen und Forscher auch Gs und Is zu den As hinzufügten. Das erlaubte ihnen, das gesamte Poly(A)-Endstück zu kopieren. „Wir haben die Endstücke verfolgt“, sagte Legnini.

Extrem genau

Ihre DNA-Bibliothek wurde durch einen PacBio-Sequenzierer geschleust, der komplette Sequenzen von Einzelmolekülen erzeugt. Auf der computergestützten Seite des Labors analysierte Dr. Nikos Karaiskos die langen Buchstabenfolgen G, T, A und C und testete sie auf ihre Genauigkeit – mit Proben, bei denen die Anzahl von As bekannt war, und indem er die Ergebnisse mit anderen Sequenzierungsmethoden und Datensätzen verglich. Die Resultate zeigten, dass FLAM-Seq extrem genau ist.

Die Forscherinnen und Forscher prüften die Methode mit uterschiedlichsten Gewebearten – menschlichen Krebszellen, Gehirnzellen, die aus induzierten pluripotenten Stammzellen hergestellt wurden, Wurmzellen. Mit allen haben sie ähnlich gute Ergebnisse erzielt. Das zeigt, dass das Protokoll für jede biologische Probe funktioniert.

„Wir sind wirklich in der Lage, die komplette mRNA in nur einem Anlauf zu untersuchen. Und zwar ohne dass wir dafür aufwendig berechnen müssen, wie die Fragmente zusammengesetzt werden, um eine Vorstellung von der gesamten mRNA in der Zelle zu bekommen“, sagte Jonathan Alles, einer der Erstautoren aus dem Labor von Rajewsky.

Nicht alle sind As

Die erste Analyse offenbarte einige interessante Einblicke. Die Endstücke bestehen nicht alle aus As. Bereits frühere Forschungen hatten gezeigt, dass die äußersten Spitzen der Endstücke neben As auch andere Nukleotide enthielten, aber die überwiegende Mehrheit der Endstücke war zuvor unzugänglich gewesen. Mit FLAM-seq beobachtete das BIMSB-Team nun, dass es weitaus mehr Stellen in den Endstücken gibt, an denen die As durch Cytidine (Cs) ersetzt werden.

Ein weiterer Befund ist, dass die Endstücke verschiedener mRNAs, auch wenn sie vom gleichen Gen produziert werden, eine sehr unterschiedliche Länge haben können. Manche sind etwa 30 Nukleotide lang, andere mehrere hundert. Aber wenn die Länge nicht mit dem Niveau der Proteinproduktion korreliert, wie bisher angenommen, wozu gibt es dann so dramatisch unterschiedliche Längen?

„Die Evolution hat diese Prozesse seit Millionen von Jahren geprägt, ich kann nicht glauben, dass dies nur Zufall ist“, sagte Legnini. „Es muss einen Grund geben, warum mRNA mit unterschiedlich langen Endstücken ausgestattet ist.“

Nun, da das Werkzeug entwickelt, erprobt und zum Patent angemeldet wurde, könne das wahre Vergnügen beginnen, sagte Legnini. Mit FLAM-Seq können jetzt spezifische Fragen untersucht werden.

„Wir wissen, dass die Genexpression durch das Zusammenspiel verschiedener Prozesse, nämlich Transkription, Spleißen und Tailing, reguliert wird“, sagte Rajewsky. „Ich bin sehr glücklich über FLAM-seq. Es ermöglicht es uns, diesem Gespräch direkt zuzuhören und wird uns so helfen, das Zusammenspiel zu verstehen.“

Die Gruppe teilte die Methode auf der Plattform Protocol Exchange und ermutigt andere Labore, sie auszuprobieren.

Weitere Informationen:

AG Rajewsky
Beschreibung der Methode auf Protocol Exchange
Literatur
Ivano Legnini, Jonathan Alles et al. (2019): „FLAM-seq: full-length mRNA sequencing reveals principles of poly(A) tail length control“.

Nature Methods, https://doi.org/10.1038/s41592-019-0503-y

Jutta Kramm | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft
Weitere Informationen:
http://www.mdc-berlin.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht HD-Mikroskopie in Millisekunden
20.09.2019 | Universität Bielefeld

nachricht Alpenflora im Klimawandel: Pflanzen reagieren mit "Verspätung"
20.09.2019 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ferroelektrizität verbessert Perowskit-Solarzellen

20.09.2019 | Energie und Elektrotechnik

HD-Mikroskopie in Millisekunden

20.09.2019 | Biowissenschaften Chemie

Kinobilder aus lebenden Zellen: Forscherteam aus Jena und Bielefeld 
verbessert superauflösende Mikroskopie

20.09.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics