Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Fische ohne Flossen – Fehler im Zelltransport hat fatale Folgen

25.10.2013
Die Erforschung des Vesikeltransports in Zellen wurde in diesem Jahr mit dem Nobelpreis belohnt – Berliner Forscher zeigen nun, dass dieser Transportmechanismus auch über die Aktivierung von Genen entscheidet. Die Vesikel spielen so bei der Embryonalentwicklung und auch bei der Entstehung aggressiver Krebserkrankungen eine entscheidende Rolle.

Ohne AP-1 kann kein lebensfähiges Wirbeltier entstehen – ist eines der Gene für das Protein ausgeschaltet, entwickeln sich beispielsweise Mäuse nicht über das frühe Embryonalstadium hinaus.


Obereres Bild: Zebrafischembryo mit Brustflossen. Unteres Bild: Zebrafischembryo, bei dem der AP-1-Enzym-Komplex ausgeschaltet wurde, ohne Brustflossen.

Autor: Marnix Wieffer

Die Gruppe um Volker Haucke am Leibniz-Institut für Molekulare Pharmakologie (FMP) hat nun aufgeklärt, welche Rolle AP-1 zusammen mit einem assoziierten Enzym im Inneren der Zelle spielt: Es dient als Sortiersignal für Membranvesikel im Inneren der Zelle, und das hat weitreichende Folgen.

Zunächst konnten die FMP-Forscher durch hochauflösende Fluoreszenzaufnahmen zeigen, dass AP-1 als Teil eines Proteinkomplexes durch die Zelle wandert. Durch die Katalyse eines bestimmten Enzyms (PI4-Kinase vom Typ 2β) wird es zusammen mit diesem Enzym an Membranvesikel gebunden. Solche Vesikel schnüren sich an der Membran des Trans-Golgi Netzwerkes ein und bewegen sich durch das Innere der Zelle: Wie auf einem Rangierbahnhof werden so beständig Stoffe aufgenommen, zu zellulären Mülldeponien weitergereicht, oder auch recycelt und so zur Außenmembran zurücktransportiert. Für die Aufklärung dieser Transportwege wurde 2013 der Nobelpreis für Medizin verliehen.

Wie aber kann der Vesikeltransport über die Aktivierung von Genen im Zellkern entscheiden? Auf die richtige Spur kamen die FMP-Forscher, als sie den AP-1-Enzym-Komplex in Zebrafischen ausschalteten.

„Bei den nur wenige Tage alten Embryonen der Fische wuchsen daraufhin keine Brustflossen – das ist mit Menschen vergleichbar, denen die Arme fehlen“, erklärt Volker Haucke. Über die Entstehung von Brustflossen aber sind bereits viele Details bekannt: Sie entwickeln sich aus frühen knospenförmigen Strukturen, wenn darin zum richtigen Zeitpunkt Zellen durch ein bestimmtes, Signal, das WNT-Molekül aktiviert werden.

Der WNT-Signalweg ist ein altes Entwicklungsprogramm, das früh in der Evolution entstand und in allen Wirbeltieren, so auch im Menschen wirkt. Das WNT-Molekül bindet dabei an einen Rezeptor, der aus der Zelle herausragt. Dadurch wird im Zellinneren eine Signalkette in Gang gesetzt, die kaskadenartig Gene im Zellkern anschaltet, die über die weitere Entwicklung entscheiden. Dabei wird der WNT-Rezeptor als Teil eines Vesikels ins Zellinnere geschleust, und hier kommt es zu einer wichtigen Weichenstellung: Bindet der AP-1-Komplex an das Vesikel, dann wandert dieses zurück zur Außenmembran. Der Rezeptor ragt nun wieder aus der Zelle heraus und kann aufs Neue aktiviert werden. Fehlt aber der Weichensteller AP-1, dann wandert das Vesikel mitsamt Rezeptor auf eine Art Mülldeponie. Er wird dann im Inneren der Zelle verdaut – mit tödlichen Folgen für die Entwicklung des Embryos.

„Wir haben erstmals gezeigt, wie der WNT-Signalweg durch den Vesikeltransport reguliert wird“, freut sich FMP-Direktor Volker Haucke.

Zugleich ist die Entdeckung medizinisch relevant: Bei verschiedenen Krebserkrankungen, zum Beispiel Brust- und Darmkrebs, ist der WNT-Signalweg im erwachsenen Menschen fälschlicherweise aktiv. Krebsgeschwüre mit WNT-Aktivierung sind dabei oft besonders aggressiv und schwer therapierbar. Der AP-1-Komplex und das diesen regulierende Enzym, ohne den der WNT-Signalweg nicht funktioniert, könnten daher Ansätze für die Entwicklung künftiger Therapien sein.

Current Biology 23, 1–6, November 4, 2013

Leibniz-Institut für Molekulare Pharmakologie (FMP)
Ob Kopfschmerzen, Bluthochdruck oder Infektionen – bei vielen Beschwerden helfen heute einfache Tabletten. Doch für etliche Krankheiten gibt es immer noch keine Heilung. Neue Medikamente waren früher meist glückliche Zufallsfunde. Inzwischen wollen Wissenschaftler aber herausfinden, was bei Krankheiten im Körper eigentlich schiefläuft und gezielt Wirkstoffe dafür entwickeln. Das FMP erforscht dafür die wichtigsten Bausteine der Körperzellen, die Proteine (Eiweißstoffe). Dabei handelt es sich um unendlich wandelbare Moleküle – sie katalysieren Reaktionen, übermitteln Signale und bilden das Grundgerüst des Lebens. Mit den unterschiedlichsten Methoden erforschen die Wissenschaftler am FMP die Form der Protein-Moleküle, wie sie funktionieren und mit welchen Wirkstoffen man sie beeinflussen kann. Daraus wird einmal die Medizin der Zukunft. Das FMP ist ein Institut der Leibniz-Gemeinschaft und des Forschungsverbunds Berlin.

Silke Oßwald | Leibniz-Institut FMP
Weitere Informationen:
http://www.fmp-berlin.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics